11 research outputs found

    Cold atoms in space: community workshop summary and proposed road-map

    Get PDF
    We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies.publishedVersio

    Cold atoms in space: community workshop summary and proposed road-map

    Get PDF
    We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies

    Role of routine abdominal ultrasonography in intensified tuberculosis case finding algorithms at HIV clinics in high TB burden settings

    No full text
    Abstract Background High proportion of TB in people living with HIV (PLHIV) is undiagnosed. Due to this active TB case finding is recommended for HIV clinics in high TB burden countries. Presently sputum examination and chest radiography are frontline tests recommended for HIV infected TB presumptives. Abdominal TB which occurs frequently in PLHIV may be missed even by existing programmatic intensified case finding protocols. This study evaluated the routine use of ultrasonography (USG) for active case finding of abdominal TB in HIV clinics. Methods Retrospective analysis of eight years’ data from an HIV Clinic in a TB hospital in India. Patients underwent chest x-ray, sputum examination, USG abdomen and routine blood tests at entry to HIV care. Case forms were scrutinized for diagnosis of TB, USG findings and CD4 cell counts. Abdominal TB was classified as probable or possible TB. Probable TB was based on presence of two major USG (abdomen) findings suggestive of active TB, or one major USG finding with at least two minor USG findings or at least two symptoms, or any USG finding with microbiologically confirmed active TB at another site. Possible TB was based on the presence of one major USG finding, or the presence of two minor USG findings with at least two symptoms. Bacteriological confirmation was not obtained. Results Eight hundred and eighty-nine people PLHIV underwent a baseline USG abdomen. One hundred and thirteen of 340 cases already diagnosed with TB and 87 of the 91 newly diagnosed with TB at time of HIV clinic registration had abdominal TB. Non-abdominal symptoms like weight loss, fever and cough were seen in 53% and 22% cases had no symptoms at all. Enlarged abdominal lymph nodes with central caseation, ascitis, splenic microabsesses, bowel thickening and hepatosplenomegaly were the USG findings in these cases. Conclusions Abdominal TB is a frequent TB site in PLHIV presenting with non-abdominal symptoms. It can be easily detected on basis of features seen on a simple abdominal ultrasound. Abdominal USG should be essential part of intensified TB case finding algorithms for HIV infected people living in high TB burden settings

    Dosimetric influence of photon beam energy and number of arcs on volumetric modulated arc therapy in carcinoma cervix: A planning study

    No full text
    AimAim of the present study was to compare the dosimetric impact of different photon beam energies and number of arcs in the treatment of carcinoma cervix.BackgroundCarcinoma cervix is a common cancer in women worldwide with a high morbidity rate. Radiotherapy is used to treat such tumours. Volumetric Modulated Arc Therapy (VMAT) is considered superior to other techniques with multiple arcs and energies.Materials and methodsTwenty patients with carcinoma cervix underwent radiotherapy in a prospective observation study conducted at our institute. Volumetric modulated arc plans with 6[[ce:hsp sp="0.25"/]]MV, 10[[ce:hsp sp="0.25"/]]MV and 15[[ce:hsp sp="0.25"/]]MV photon energies using single arc (SA) and dual arc (DA) were generated. Several physical indices for planning target volume (PTV) like V95%, V100%, V110%, D98%, D50%, D2% and total number of MUs were compared. Normal Tissue Integral Dose (NTID) and dose to a shell structure PHY2.5 and PHY5.0 were analyzed.ResultsComparable dose coverage to PTV was observed for all the energies and arcs. CI for DA6MV (1.095) was better than SA6MV (1.127), SA10MV (1.116) and SA15MV (1.116). Evaluated parameters showed significant reduction in OAR doses. Mean bladder dose for DA6MV (41.90[[ce:hsp sp="0.25"/]]Gy) was better than SA6MV (42.48[[ce:hsp sp="0.25"/]]Gy), SA10MV (42.08[[ce:hsp sp="0.25"/]]Gy) and SA15MV (41.93[[ce:hsp sp="0.25"/]]Gy). Similarly, p-value for the mean rectal dose calculated was 0.001 (SA6 vs 15), 0.013 (DA6 vs 10) and 0.003 (DA6 vs 15) and subsequently favoured DA6MV. Difference in NTID was very small.ConclusionsThe study showed no greater advantage of higher energy, and DA VMAT plan with 6[[ce:hsp sp="0.25"/]]MV photon energy was a good choice of treatment for carcinoma cervix as it delivered a highly homogeneous and conformal plan with superior target coverage and better OAR sparing

    Neuroimmune crosstalk and evolving pharmacotherapies in neurodegenerative diseases

    No full text
    Neurodegeneration is characterized by gradual onset and limited availability of specific biomarkers. Apart from various aetiologies such as infection, trauma, genetic mutation, the interaction between the immune system and CNS is widely associated with neuronal damage in neurodegenerative diseases. The immune system plays a distinct role in disease progression and cellular homeostasis. It induces cellular and humoral responses, and enables tissue repair, cellular healing and clearance of cellular detritus. Aberrant and chronic activation of the immune system can damage healthy neurons. The pro‐inflammatory mediators secreted by chief innate immune components, the complement system, microglia and inflammasome can augment cytotoxicity. Furthermore, these inflammatory mediators accelerate microglial activation resulting in progressive neuronal loss. Various animal studies have been carried out to unravel the complex pathology and ascertain biomarkers for these harmful diseases, but have had limited success. The present review will provide a thorough understanding of microglial activation, complement system and inflammasome generation, which lead the healthy brain towards neurodegeneration. In addition to this, possible targets of immune components to confer a strategic treatment regime for the alleviation of neuronal damage are also summarized

    Cold atoms in space : community workshop summary and proposed road-map

    No full text
    corecore