23 research outputs found

    Dominant-negative variant in SLC1A4 causes an autosomal dominant epilepsy syndrome.

    Get PDF
    SLC1A4 is a trimeric neutral amino acid transporter essential for shuttling L-serine from astrocytes into neurons. Individuals with biallelic variants in SLC1A4 are known to have spastic tetraplegia, thin corpus callosum, and progressive microcephaly (SPATCCM) syndrome, but individuals with heterozygous variants are not thought to have disease. We identify an 8-year-old patient with global developmental delay, spasticity, epilepsy, and microcephaly who has a de novo heterozygous three amino acid duplication in SLC1A4 (L86_M88dup). We demonstrate that L86_M88dup causes a dominant-negative N-glycosylation defect of SLC1A4, which in turn reduces the plasma membrane localization of SLC1A4 and the transport rate of SLC1A4 for L-serine

    WRN Mutation Update: Mutation Spectrum, Patient Registries, and Translational Prospects: HUMAN MUTATION

    Get PDF
    Werner syndrome (WS) is a rare autosomal recessive disorder characterized by a constellation of adult onset phenotypes consistent with an acceleration of intrinsic biological aging. It is caused by pathogenic variants in the WRN gene, which encodes a multifunctional nuclear protein with exonuclease and helicase activities. WRN protein is thought to be involved in optimization of various aspects of DNA metabolism, including DNA repair, recombination, replication, and transcription. In this update, we summarize a total of 83 different WRN mutations, including eight previously unpublished mutations identified by the International Registry of Werner Syndrome (Seattle, WA) and the Japanese Werner Consortium (Chiba, Japan), as well as 75 mutations already reported in the literature. The Seattle International Registry recruits patients from all over the world to investigate genetic causes of a wide variety of progeroid syndromes in order to contribute to the knowledge of basic mechanisms of human aging. Given the unusually high prevalence of WS patients and heterozygous carriers in Japan, the major goal of the Japanese Consortium is to develop effective therapies and to establish management guidelines for WS patients in Japan and elsewhere. This review will also discuss potential translational approaches to this disorder, including those currently under investigation

    WRN Mutation Update: Mutation Spectrum, Patient Registries, and Translational Prospects

    No full text
    Werner syndrome (WS) is a rare autosomal recessive disorder characterized by a constellation of adult onset phenotypes consistent with an acceleration of intrinsic biological aging. It is caused by pathogenic variants in the WRN gene, which encodes a multifunctional nuclear protein with exonuclease and helicase activities. WRN protein is thought to be involved in optimization of various aspects of DNA metabolism, including DNA repair, recombination, replication, and transcription. In this update, we summarize a total of 83 different WRN mutations, including eight previously unpublished mutations identified by the International Registry of Werner Syndrome (Seattle, WA) and the Japanese Werner Consortium (Chiba, Japan), as well as 75 mutations already reported in the literature. The Seattle International Registry recruits patients from all over the world to investigate genetic causes of a wide variety of progeroid syndromes in order to contribute to the knowledge of basic mechanisms of human aging. Given the unusually high prevalence of WS patients and heterozygous carriers in Japan, the major goal of the Japanese Consortium is to develop effective therapies and to establish management guidelines for WS patients in Japan and elsewhere. This review will also discuss potential translational approaches to this disorder, including those currently under investigation. (C) 2016 Wiley Periodicals, Inc

    Hemochromatosis risk genotype is not associated with colorectal cancer or age at its diagnosis

    No full text
    Homozygotes for the higher penetrance hemochromatosis risk allele, HFE c.845G>A (p.Cys282Tyr, or C282Y), have been reported to be at a 2- to 3-fold increased risk for colorectal cancer (CRC). These results have been reported for small sample size studies with no information about age at diagnosis for CRC. An association with age at diagnosis might alter CRC screening recommendations. We analyzed two large European ancestry datasets to assess the association of HFE genotype with CRC risk and age at CRC diagnosis. The first dataset included 59,733 CRC or advanced adenoma cases and 72,351 controls from a CRC epidemiological study consortium. The second dataset included 13,564 self-reported CRC cases and 2,880,218 controls from the personal genetics company, 23andMe. No association of the common hereditary hemochromatosis (HH) risk genotype and CRC was found in either dataset. The odds ratios (ORs) for the association of CRC and HFE C282Y homozygosity were 1.08 (95% confidence interval [CI], 0.91-1.29; p = 0.4) and 1.01 (95% CI, 0.78-1.31, p = 0.9) in the two cohorts, respectively. Age at CRC diagnosis also did not differ by HFE C282Y/C282Y genotype in either dataset. These results indicate no increased CRC risk in individuals with HH genotypes and suggest that persons with HH risk genotypes can follow population screening recommendations for CRC
    corecore