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BRIEF COMMUNICATION
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Abstract

SLC1A4 is a trimeric neutral amino acid transporter essential for shuttling

L-serine from astrocytes into neurons. Individuals with biallelic variants in

SLC1A4 are known to have spastic tetraplegia, thin corpus callosum, and pro-

gressive microcephaly (SPATCCM) syndrome, but individuals with heterozy-

gous variants are not thought to have disease. We identify an 8-year-old patient

with global developmental delay, spasticity, epilepsy, and microcephaly who has

a de novo heterozygous three amino acid duplication in SLC1A4

(L86_M88dup). We demonstrate that L86_M88dup causes a dominant-negative

N-glycosylation defect of SLC1A4, which in turn reduces the plasma membrane

localization of SLC1A4 and the transport rate of SLC1A4 for L-serine.

Introduction

Serine synthesis is confined to glia within the brain and is

shuttled to neurons via SLC1A4, a dedicated neutral

amino acid transporter. Disruptions in this process lead

to SPATCCM syndrome, which is characterized by

seizures, microcephaly, spasticity, intellectual disability,

developmental delay, and a thin corpus callosum with
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delayed myelination and cortical atrophy.1 Eight distinct

variants within SLC1A4 (Y191*, E256K, G374R, G381R,
R457W, R457Q, L315Hfs*42, and W453*)1–8 have been

associated with SPATCCM syndrome in the recessive

state. Notably, SLC1A4 haploinsufficiency does not appear

to result in disease, as individuals heterozygous for the

pathogenic Y191*, and L315Hfs*42 variants are unaf-

fected. Furthermore, although SLC1A4 forms a trimeric

protein, the SLC1A4 R457W and E256K missense variants

do not appear to impact protein folding or trafficking to

the plasma membrane, but rather markedly reduce

SLC1A4 L-serine transport capacity.8 In contrast, we iden-

tified a patient with SPATCCM syndrome who was found

to have a de novo heterozygous variant in SLC1A4 with

no rare coding or non-coding SLC1A4 variants in trans.

As SLC1A4 forms a homomeric protein complex essential

for shuttling L-serine from astrocytes into neurons, we

sought to evaluate whether this variant protein is exerting

a dominant-negative effect on the remaining wild-type

SLC1A4 protein. Dominant-negative variants have been

well characterized in similar transporters,9 and are charac-

terized by their ability to co-assemble with and subse-

quently interfere with the function of wild-type protein

via reduced overall plasma membrane expression or

altered transport function.

Methods

Genetic testing of proband

Initial genetic testing included microarray (Seattle Chil-

dren’s Hospital, Seattle, WA, USA), chromosomal break-

age studies from blood and fibroblasts (OHSU, Portland,

OR), proband-only exome sequencing (Baylor University,

Waco, TX, USA), and trio exome sequencing (Prevention

Genetics, Marshfield, WI, USA). Exome reanalysis and

trio genome sequencing were performed through the

Undiagnosed Diseases Network, and long-read genome

sequencing (Oxford Nanopore) was performed for the

proband.

Plasmid constructs, cell culture, and
transfection

HEK293T cells (ATCC) were maintained under standard

culture conditions9 and transfected using FuGENE HD

(Promega, Madison, WI, USA) with a pcDNA 3.1 plasmid

containing wild-type human SLC1A4 (NM_003038.5)

tagged with a C-terminal HA-tag (SLC1A4wt) or a version

of this plasmid with the sequence CTGCGCATG inserted

at coding position 264 (SLC1A4L86_M88dup). Cells were

transfected with 0.1 lg (Fig. 2) or 3 lg (Fig. 3) DNA/

well, while co-transfected cells received 0.05 lg (Fig. 2) or

1.5 lg (Fig. 3) DNA/well of each construct in a 1:1 ratio.

Experiments were performed 24–48 h post-transfection.

Surface biotinylation and immunoblotting

Transfected cells were washed thrice then incubated for

1 h at 4°C with Biotinylation buffer (1.5 mg/mL Sulfo-

NHS-SS-Biotin, 10 mmol/L TEA pH 7.4, 2 mM CaCl2
and 150 mmol/L NaCl), followed by 20-min at 4°C with

quenching buffer (PBS-Ca-Mg supplemented with

100 mmol/L glycine) and then washed thrice. Cells were

lysed using RIPA buffer (150 mmol/L NaCl2, 5 mmol/L

EDTA, 1% Triton X-100, 0.5% deoxycholate, 0.1% SDS,

and 50 mmol/L Tris–HCl, pH 7.4, cOmpleteTM PI).

Cleared lysates were incubated with streptavidin-agarose

beads overnight at 4°C. Beads were centrifuged and the

“non-membrane” supernatant was collected. Beads were

then washed thrice with solution A (with 50 mmol/L

NaCl, 5 mmol/L EDTA, and 50 mmol/L Tris–HCl,

pH 7.4), twice with solution B (500 mmol/L NaCl and

20 mmol/L Tris–HCl, pH 7.4), and once with solution C

(10 mmol/L Tris–HCl, pH 7.4) and “membrane surface

proteins” were eluted using Laemmli 29 buffer at 95°C.
Samples were resolved on 8% SDS-polyacrylamide (SDS-

PAGE) gels, transferred onto polyvinylidene difluoride

membrane, immunoblotted using mouse-monoclonal

anti-HA (Merck, South San Francisco, CA, USA) or anti-

Actin (Santa Cruz Biotechnology, Santa Cruz, CA, USA),

incubated with HRP-conjugated goat anti-mouse IgG

(Bio-Rad, Hercules, CA, USA), and visualized with

enhanced chemiluminescence (ECL). All biotinylated pro-

teins were also visualized with Avidin–HRP conjugate

(Bio-Rad) to ensure equal sample loading. Optical densi-

tometry was determined using ImageJ. To identify

N-glycosylated proteins, the non-membrane fraction was

treated with PNGaseF (NEB) prior to immunoblotting.

Radiolabeled L-Serine and L-Alanine uptake

Transfected cells were washed thrice with Choline buffer

(140 mmol/L choline chloride, 5 mmol/L KCl, 1 mmol/L

KH2PO4, 1.8 mmol/L CaCl2, 0.4 mmol/L MgCl2, and

5 mmol/L HEPES pH 7.2) and then incubated for

15 min at room temperature (RT) with Choline buffer,

and 4 min at RT with uptake solution (140 mmol/L

NaCl, 5 mmol/L KCl, 1 mmol/L KH2PO4, 1.8 mmol/L

CaCl2, 0.4 mmol/L MgCl2, and 5 mmol/L HEPES

pH 7.2) supplemented with indicated amounts of non-

radioactive L-Serine or L-Alanine and 0.05 lCi of [3H]-

L-Serine or [3H]-L-Alanine. Reactions were stopped by

washing cells thrice with ice-cold Choline buffer supple-

mented with 1 mmol/L L-Serine or L-Alanine and then

incubated with MicroScintTM-20 (PerkinElmer, Waltham,
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MA, USA) for 1 h at RT. Radioactivity was measured by

scintillation counting with the MicroBeta2 microplate

counter (PerkinElmer), and counts per minute were

transformed into influx rates (pmol/min).9 Kinetic

parameters were obtained using the Hill equation.

Statistics

Unpaired Student’s t tests or Mann–Whitney U tests

established whether differences between experimental

groups were significant (P < 0.05).

Standard protocol approvals

This study was approved by the National Institutes of

Health (NIH) Institutional Review Board (IRB) (IRB

#15HG0130), and written informed consent was obtained

from all participants in the study.

Results

Clinical phenotype of autosomal dominant
SLC1A4-related disease

We present an 8-½-year-old girl with intractable epilepsy,

spasticity with axial hypotonia, severe congenital-onset

microcephaly, intracranial calcifications, multiple dysmor-

phic facial features, bilateral limb reduction defect,

lipodystrophy, skeletal abnormalities, and intellectual

disability (Table S1). She is the only child of non-

consanguineous parents and was born after a pregnancy

complicated by IUGR. Brain MRI demonstrated micro-

cephaly with simplified gyral pattern, intracranial calcifi-

cations, thin corpus callosum, diffusely poor myelination,

bilateral linear periventricular calcifications, and severe

asymmetric microphthalmia. Family history was negative

for congenital anomalies or epilepsy. Trio exome sequenc-

ing revealed a de novo heterozygous c.256_264dup

(p.Leu86_Met88dup) variant in SLC1A4 that is absent

from gnomAD v3.2.1. Long-read genome sequencing of

the proband did not reveal any rare variants in trans with

SLC1A4 Leu86_Met88dup. Exome reanalysis and trio

genome sequencing identified no additional pathogenic

variants to explain her complex phenotype (Table S2).

She died at age 10 due to complications of her disease.

SLC1A4L86_M88dup has decreased substrate
transport

Residues L86-R87-M88 of SLC1A4 are located at the

interface between the three SLC1A4 subunits and sit

within the transmembrane helix 2 (TMH2) domain of

SLC1A4.10 TMH2 is part of the scaffold domain of

SLC1A4 (Fig. 1), which is essential for translocating sub-

strates via an elevator transport mechanism.11,12 We

transfected HEK293T cells with either wild-type SLC1A4

(SLC1A4WT) or Leu86_Met88dup variant SLC1A4

(SLC1A4L86_M88dup) to evaluate the transport ability of

Transport domain Scaffold domain

L86 R87 M88

E256

G374, G381

R457

Figure 1. Structural relationship between pathogenic variants within SLC1A4. Upper and side view of the cryo-EM structure of human SLC1A4.

Transport and scaffold domains for each subunit of the trimer are highlighted as indicated. Previously reported disease-linked SLC1A4 variants

(E256, R457, G374, and G381) are colored (pink, green, and yellow). Residues duplicated in the mutation under study L86, R87, and M88 are col-

ored in red.
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these proteins. Uptake of both L-serine and L-alanine in

cells transfected with SLC1A4L86_M88dup was significantly

decreased (Fig. 2A), indicating that the Leu86_Met88dup

variant impacts the overall transport activity of

SLC1A4. Notably, whereas both SLC1A4WT and

SLC1A4L86_M88dup have a similar affinity for L-serine

(Ec50 � 80-100 lmol/L), the maximum transport rate

(Imax) of SLC1A4L86_M88dup was 3fold less than that of

SLC1A4WT (Fig. 2B).

SLC1A4L86_M88dup has a dominant-negative
impact on SLC1A4 function

As SPATCCM syndrome is associated with biallelic

SLC1A4 loss of function variants, we examined whether

SLC1A4L86_M88dup disrupted SLC1A4WT function in a

dominant-negative manner. We co-transfected HEK293T

cells with equal amounts of both SLC1A4WT and

SLC1A4L86_M88dup. Notably, these cells exhibited a
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Figure 2. SLC1A4L86_M88dup has a dominant-negative impact on SLC1A4 function. (A) Uptake of 25 lmol/L [3H]-L-serine (left) and 25 llmol/L

[3H]-L-alanine (right) by HEK293T cells transfected with the indicated constructs. (B, C) [3H]-L-serine kinetics by HEK293T cells transfected with (B)

SLC1A4WT (WT) or SLC1A4L86_M88dup (L86_M88dup), (C) or co-transfected with both empty vector and SLC1A4WT (EV + WT), or SLC1A4WT and

SLC1A4L86_M88dup (WT + L86_M88dup). (below) Kinetic parameters obtained by fitting the results to the Hill equation. Data represented as

mean � SD and obtained from two independent experiments with 2–16 technical replicates each. *P < 0.001.
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significant loss of SLC1A4 transport function when com-

pared to cells co-transfected with equal amounts of

SLC1A4WT and empty vector, indicating that

SLC1A4L86_M88dup has a dominant-negative impact on the

transport activity of SLC1A4WT for both L-serine and L-

alanine (Fig. 2A). The dominant-negative impact of

SLC1A4L86_M88dup on SLC1A4WT function appears to be

largely mediated by a decrease in the Imax of SLC1A4, as

the affinity of SLC1A4 for L-serine was not significantly

changed (Fig. 2C).

SLC1A4L86_M88dup reduces the membrane
localization of SLC1A4

We next sought to determine whether the impact of

SLC1A4L86_M88dup on SLC1A4 substrate transport was
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Figure 3. SLC1A4L86_M88dup has a dominant-negative impact on SLC1A4 N-glycosylation. (A) Immunoblots showing the localization of overex-

pressed HA-tagged SLC1A4WT (WT) or SLC1A4L86_M88dup (dLRM) within the plasma membrane and non-membrane fractions. (below) Actin con-

trol. (right) Quantification of the optical density (O.D.) for the ~60 and ~80 kDa bands in the membrane and non-membrane fractions

(mean � SD). ns, non-significant P > 0.05; *P < 0.01. (B) Immunoblot showing the molecular weight of overexpressed HA-tagged SLC1A4WT

(WT) in untreated cell lysates, as well as cell lysates treated with the N-glycosidase PNGase F prior to the immunoblotting. (C) Same as (A), but

using cells co-transfected with both empty vector and SLC1A4WT (EV + WT), or SLC1A4WT and SLC1A4L86_M88dup (WT + L86_M88dup). (D) Cryo-

EM structure of human SLC1A4 with residues Leu88, Arg87, and Met88 colored in red, blue, and white respectively. Putative N-linked glycosyla-

tion sites10,16 located in an extracellular loop present at the end of TM4 are colored in yellow.
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mediated by a reduction in SLC1A4 protein within the

plasma membrane. Whereas the level of SLC1A4 mono-

mers in the non-membrane fraction was similar between

cells transfected with either SLC1A4L86_M88dup or

SLC1A4WT, cells transfected with SLC1A4L86_M88dup had a

2fold reduction in the amount of SLC1A4 in the mem-

brane fraction (Fig. 3A). This is consistent with a model,

whereby SLC1A4L86_M88dup decreases substrate transport

by restricting the amount of functional SLC1A4 protein

within the plasma membrane, rather than affecting the

transport cycle mechanism.

SLC1A4L86_M88dup impacts SLC1A4 N-
glycosylation

In the membrane fraction, we observed two predominant

bands for SLC1A4, one corresponding to an SLC1A4

monomer (~60 kDa), as well as an additional band at

~80 kDa. As SLC1A4 is known to undergo N-

glycosylation,13 we treated these protein extracts with N-

Glycosidase PNGase F to determine whether this ~80 kDa

band corresponds to N-glycosylated SLC1A4. Indeed, the

~80 kDa band disappeared after treatment with PNGase F

with a corresponding increased intensity of the mono-

meric ~60 kDa band (Fig. 3B), confirming the ~80 kDa

band as N-glycosylated SLC1A4. Notably, this N-

glycosylated 80 kDa band was largely absent in cells trans-

fected with SLC1A4L86_M88dup (Fig. 3A), indicating that

SLC1A4L86_M88dup disrupts normal N-glycosylation of

SLC1A4.

SLC1A4L86_M88dup has a dominant-negative
impact on SLC1A4 N-glycosylation

We found that co-transfection with both SLC1A4WT and

SLC1A4L86_M88dup resulted in largely absent N-

glycosylated SLC1A4 (Fig. 3C), demonstrating a

dominant-negative impact of SLC1A4L86_M88dup on

SLC1A4WT N-glycosylation. Notably, the SLC1A4 TMH2

domain that contains residues L86-R87-M88 is not

known to contain a glycosylation site, as glycosylation is

thought to be limited to an extracellular loop present in

the TM4 domain located over 100 amino acids C-

terminal to these residues.10 However, within the trimeric

SLC1A4 structure, residues L86-R87-M88 directly interact

with the TM4 domain of adjacent SLC1A4 monomers

(Fig. 3D). Consequently, it is likely that the Leu86_-

Met88dup variant distorts the structure of the TMH2 and

hinders the N-glycosylation process of both the monomer

containing the variant and the neighboring monomer

within the trimeric protein.

Discussion

We identify a patient with a clinical phenotype consis-

tent with SPATCCM syndrome that appears to be

caused by a heterozygous de novo variant in SLC1A4,

thus implicating SPATCCM syndrome as both an auto-

somal recessive and dominant Mendelian disorder.

Unlike SLC1A4 variants associated with autosomal reces-

sive SPATCCM syndrome, the SLC1A4 Leu86_Met88dup

variant has a dominant-negative impact on SLC1A4, as

is evidenced by its ability to interfere with the function

of remaining wild-type SLC1A4 protein. Specifically,

SLC1A4L86_M88dup results in an N-glycosylation and

membrane trafficking defect that reduces the overall

membrane localization of wild-type SLC1A4 and the

transport rate of SLC1A4 for L-serine. N-glycosylation

has been linked to trafficking of numerous trans-

porters,14,15 and the dominant-negative impact of

SLC1A4L86_M88dup on N-glycosylation indicates that N-

glycosylation likely occurs mainly after the formation of

trimeric protein and is necessary for normal SLC1A4

trafficking and function. Overall, these findings provide

basic insights into SLC1A4 trafficking and function and

expand the spectrum of SLC1A4-related disorders.
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information on the research and clinical genetic testing

performed on the proband.
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