52 research outputs found

    Neutrophil/lymphocyte ratio predicts chemotherapy outcomes in patients with advanced colorectal cancer

    Get PDF
    BACKGROUND: Advances in the treatment of metastatic colorectal cancer (mCRC) in the last decade have significantly improved survival; however, simple biomarkers to predict response or toxicity have not been identified, which are applicable to all community oncology settings worldwide. The use of inflammatory markers based on differential white-cell counts, such as the neutrophil/ lymphocyte ratio (NLR), may be simple and readily available biomarkers. METHODS: Clinical information and baseline laboratory parameters were available for 349 patients, from two independent cohorts, with unresectable mCRC receiving first-line palliative chemotherapy. Associations between baseline prognostic variables, including inflammatory markers such as the NLR and tumour response, progression and survival were investigated. RESULTS: In the training cohort, combination-agent chemotherapy (P ¼ 0.001) and NLRp5 (P ¼ 0.003) were associated with improved clinical benefit. The ECOG performance status X1 (P ¼ 0.002), NLR45 (P ¼ 0.01), hypoalbuminaemia (P ¼ 0.03) and single-agent chemotherapy (Po0.0001) were associated with increased risk of progression. The ECOG performance status X1 (P ¼ 0.004) and NLR45 (P ¼ 0.002) predicted worse overall survival (OS). The NLR was confirmed to independently predict OS in the validation cohort (Po0.0001). Normalisation of the NLR after one cycle of chemotherapy in a subset of patients resulted in improved progression-free survival (P ¼ 0.012). CONCLUSION: These results have highlighted NLR as a potentially useful clinical biomarker of systemic inflammatory response in predicting clinically meaningful outcomes in two independent cohorts. Results of this study have also confirmed the importance of a chronic systemic inflammatory response influencing clinical outcomes in patients with mCRC

    A community perspective on the concept of marine holobionts: Current status, challenges, and future directions

    Get PDF
    Host-microbe interactions play crucial roles in marine ecosystems. However, we still have very little understanding of the mechanisms that govern these relationships, the evolutionary processes that shape them, and their ecological consequences. The holobiont concept is a renewed paradigm in biology that can help to describe and understand these complex systems. It posits that a host and its associated microbiota with which it interacts, form a holobiont, and have to be studied together as a coherent biological and functional unit to understand its biology, ecology, and evolution. Here we discuss critical concepts and opportunities in marine holobiont research and identify key challenges in the field. We highlight the potential economic, sociological, and environmental impacts of the holobiont concept in marine biological, evolutionary, and environmental sciences. Given the connectivity and the unexplored biodiversity specific to marine ecosystems, a deeper understanding of such complex systems requires further technological and conceptual advances, e.g., the development of controlled experimental model systems for holobionts from all major lineages and the modeling of (info)chemical-mediated interactions between organisms. Here we propose that one significant challenge is to bridge cross-disciplinary research on tractable model systems in order to address key ecological and evolutionary questions. This first step is crucial to decipher the main drivers of the dynamics and evolution of holobionts and to account for the holobiont concept in applied areas, such as the conservation, management, and exploitation of marine ecosystems and resources, where practical solutions to predict and mitigate the impact of human activities are more important than ever
    corecore