30 research outputs found

    Composition and biological activity of the essential oil peruvian lantana camara

    Get PDF
    The composition of the essential oil from Lantana camara L. (Verbenaccae) obtained by hydrodistillation of the aerial parts was examined by GC, GC/MS, and (13)C-NMR. The GC analysis showed that carvone is the most abundant monoterpene 75.9%, together with limonene 16.9%, accounting for 92.8% of the oil. The major components were also tested by (13)C-NMR analysis of the essential oil. The L. camara oil was assayed against several microorganisms, showing moderate antibacterial activity against the human pathogen Staphylococcus aureus (MIC 200 mu g/ml). High antioxidant activity evaluated by the Trolox equivalent antioxidant capacity assay (TEAC) was found (29.0 mmol Trolox/kg) and relative low anti-inflammatory activity due to its weak ability for inhibiting lipoxygenase (IC(50) = 81.5 mu g/ml)

    Pre-treatment and extraction techniques for recovery of added value compounds from wastes throughout the agri-food chain

    Full text link

    Pre-treatment and extraction techniques for recovery of added value compounds from wastes throughout the agri-food chain

    Get PDF
    The enormous quantity of food wastes discarded annually force to look for alternatives for this interesting feedstock. Thus, food bio-waste valorisation is one of the imperatives of the nowadays society. This review is the most comprehensive overview of currently existing technologies and processes in this field. It tackles classical and innovative physical, physico-chemical and chemical methods of food waste pre-treatment and extraction for recovery of added value compounds and detection by modern technologies and are an outcome of the COST Action EUBIS, TD1203 Food Waste Valorisation for Sustainable Chemicals, Materials and Fuels

    Interactions of N '-acetyl-rifabutin and N '-butanoyl-rifabutin with lipid bilayers: A synchrotron X-ray study

    No full text
    This work focuses on the interaction of N′-acetyl-rifabutin (RFB2) and N′-butanoyl-rifabutin (RFB3) with human and bacterial cell membrane models under physiological conditions. The effect of RFB2 and RFB3 on human cell membrane models was assessed using multilamellar vesicles (MLVs) composed of 1,2-dimyristoyl-rac-glycero-3-phosphocholine (DMPC). In order to mimic the bacterial cell membrane, MLVs of 1,2-dimyristoyl-sn-glycero-3-phospho-rac-(1-glycerol) (DMPG) and a mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) and 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol) (DPPG) (8:2 molar ratio) were chosen. Small and wide-angle X-ray scattering (SAXS and WAXS) were used to study the effect of these antimycobacterial compounds on the structure formed in aqueous lipid dispersions. This study contributes to understanding the molecular mechanisms of the drugs delivery through the human and bacterial cells and the effect of these antimycobacterial compounds on the membrane lipids organization, which is related with their antibiotic efficacy and toxic effects

    The Influence of Rifabutin on Human and Bacterial Membrane Models: Implications for Its Mechanism of Action

    No full text
    This work focuses on the interaction of the antibiotic Rifabutin (RFB) with phospholipid membrane models using small- and wide-angle X-ray scattering (SAXS and WAXS) to assess drug–membrane interactions. The effect of different concentrations of RFB on human and bacterial cell membrane models was studied using multilamellar vesicles (MLVs) at the physiological pH (7.4). In this context, MLVs of 1,2-dimyristoyl-rac-glycero-3-phosphocholine (DMPC) were chosen to mimic the human cell membrane. To mimic the bacterial cell membrane, 1,2-dimyristoyl-sn-glycero-3-phospho-rac-(1-glycerol) (DMPG) and a mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) and 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol) (DPPG) (8:2 molar ratio) were used. The results support a perturbation of the lipid bilayers caused by RFB, especially in the bacterial membrane model, inducing phase separation that might compromise the integrity of the bacterial membrane. Therefore, the different effects of this antibiotic depending on the concentration, the charge of the phospholipid headgroup, and the membrane organization may be related with the RFB antibiotic activity and the side effects, and should be accounted for during the anti-tuberculosis (anti-TB) drug design
    corecore