42 research outputs found

    Defect-induced fracture topologies in Al<sub>2</sub>O<sub>3</sub> ceramic-graphene nanocomposites

    Get PDF
    Models of ceramic-graphene nanocomposites are used to study how the manufacturing process-dependent arrangement of reduced graphene oxide (rGO) inclusions governs nano-crack network development. The work builds upon recent studies of such composites where a novel combinatorial approach was used to investigate the effect of rGO arrangements on electrical conductivity and porosity. This approach considers explicitly the discrete structure of the composite and represents it as a collection of entities of different dimensions - grains, grain boundaries, triple junctions, and quadruple points. Here, the combinatorial approach is developed further by considering the effects of rGO agglomerations, stress concentrators and adhesion energies on intergranular cracking. The results show that the fracture networks can be effectively controlled by the local ordering of rGO inclusions to allow for a concurrent increase in the strength and conductivity of the ceramic composites. It is shown that the ratio of local stress concentrators related to rGO inclusions and cracks is the most significant factor affecting the nano-crack network topology. The local spatial arrangement of rGO inclusions becomes an effective tool for controlling nano-crack network topology only when this ratio approaches one. It is anticipated that these results will inform future design of toughness-enhanced composites

    Discrete model for discontinuous dynamic recrystallisation applied to grain structure evolution inside adiabatic shear bands

    Get PDF
    Discontinuous dynamic recrystallisation (DDRX) is a well-known phenomenon playing a significant role in the high-temperature processing of metals, including industrial forming and severe plastic deformations. The ongoing discussion on the Zener–Hollomon (Z–H) parameter as a descriptor of materials’ propensity to DDRX and a measure of microstructure homogeneity leaves more questions than answers and prevents its practical application. Most of the existing DDRX models are continuous, and so the geometry and topology of real grain microstructures cannot be considered. The present study uses a fully discrete representation of polycrystalline aluminium alloys as 2D/3D Voronoi space tessellations corresponding to EBSD maps. Such tessellations are geometric realisations of combinatorial structures referred to as polytopal cell complexes. Combining discrete models with FEM LS-Dyna simulations of shock-wave propagation in AA1050 and AW5083 aluminium alloys makes it possible to estimate for the first time the contribution of DDRX to the final material microstructure inside adiabatic shear bands. It is shown that the increase of the initial fraction of high-angle grain boundaries, caused by preliminary deformation, significantly increases the spatial homogeneity and decreases the clustering of DDRX grains. The obtained results contradict the conventional assumption that the microstructures obtained by severe plastic deformation under quasi-static and dynamic deformation conditions are similar due to the similar value of the Z–H parameter: competition between the two recrystallisation mechanisms leads to almost unpredictable final grain structures inside share bands that require further comprehensive experimental studies. This agrees with experimental evidence for high material sensitivity to the Z–H parameter

    Phenological sensitivity to climate change is higher in resident than in migrant bird populations among European cavity breeders

    Get PDF
    Many organisms adjust their reproductive phenology in response to climate change, but phenological sensitivity to temperature may vary between species. For example, resident and migratory birds have vastly different annual cycles, which can cause differential temperature sensitivity at the breeding grounds, and may affect competitive dynamics. Currently, however, adjustment to climate change in resident and migratory birds have been studied separately or at relatively small geographical scales with varying time series durations and methodologies. Here, we studied differential effects of temperature on resident and migratory birds using the mean egg laying initiation dates from 10 European nest box schemes between 1991 and 2015 that had data on at least one resident tit species and at least one migratory flycatcher species. We found that both tits and flycatchers advanced laying in response to spring warming, but resident tit populations advanced more strongly in relation to temperature increases than migratory flycatchers. These different temperature responses have already led to a divergence in laying dates between tits and flycatchers of on average 0.94days per decade over the current study period. Interestingly, this divergence was stronger at lower latitudes where the interval between tit and flycatcher phenology is smaller and winter conditions can be considered more favorable for resident birds. This could indicate that phenological adjustment to climate change by flycatchers is increasingly hampered by competition with resident species. Indeed, we found that tit laying date had an additional effect on flycatcher laying date after controlling for temperature, and this effect was strongest in areas with the shortest interval between both species groups. Combined, our results suggest that the differential effect of climate change on species groups with overlapping breeding ecology affects the phenological interval between them, potentially affecting interspecific interactions

    Phenological sensitivity to climate change is higher in resident than in migrant bird populations among European cavity breeders

    Get PDF
    Abstract Many organisms adjust their reproductive phenology in response to climate change, but phenological sensitivity to temperature may vary between species. For example, resident and migratory birds have vastly different annual cycles, which can cause differential temperature sensitivity at the breeding grounds, and may affect competitive dynamics. Currently, however, adjustment to climate change in resident and migratory birds have been studied separately or at relatively small geographical scales with varying time series durations and methodologies. Here, we studied differential effects of temperature on resident and migratory birds using the mean egg laying initiation dates from 10 European nest box schemes between 1991 and 2015 that had data on at least one resident tit species and at least one migratory flycatcher species. We found that both tits and flycatchers advanced laying in response to spring warming, but resident tit populations advanced more strongly in relation to temperature increases than migratory flycatchers. These different temperature responses have already led to a divergence in laying dates between tits and flycatchers of on average 0.94 days per decade over the current study period. Interestingly, this divergence was stronger at lower latitudes where the interval between tit and flycatcher phenology is smaller and winter conditions can be considered more favorable for resident birds. This could indicate that phenological adjustment to climate change by flycatchers is increasingly hampered by competition with resident species. Indeed, we found that tit laying date had an additional effect on flycatcher laying date after controlling for temperature, and this effect was strongest in areas with the shortest interval between both species groups. Combined, our results suggest that the differential effect of climate change on species groups with overlapping breeding ecology affects the phenological interval between them, potentially affecting interspecific interactions

    Temperature synchronizes temporal variation in laying dates across European hole-nesting passerines

    Get PDF
    Publisher Copyright: © 2022 The Authors. Ecology published by Wiley Periodicals LLC on behalf of The Ecological Society of America.Identifying the environmental drivers of variation in fitness-related traits is a central objective in ecology and evolutionary biology. Temporal fluctuations of these environmental drivers are often synchronized at large spatial scales. Yet, whether synchronous environmental conditions can generate spatial synchrony in fitness-related trait values (i.e., correlated temporal trait fluctuations across populations) is poorly understood. Using data from long-term monitored populations of blue tits (Cyanistes caeruleus, n = 31), great tits (Parus major, n = 35), and pied flycatchers (Ficedula hypoleuca, n = 20) across Europe, we assessed the influence of two local climatic variables (mean temperature and mean precipitation in February–May) on spatial synchrony in three fitness-related traits: laying date, clutch size, and fledgling number. We found a high degree of spatial synchrony in laying date but a lower degree in clutch size and fledgling number for each species. Temperature strongly influenced spatial synchrony in laying date for resident blue tits and great tits but not for migratory pied flycatchers. This is a relevant finding in the context of environmental impacts on populations because spatial synchrony in fitness-related trait values among populations may influence fluctuations in vital rates or population abundances. If environmentally induced spatial synchrony in fitness-related traits increases the spatial synchrony in vital rates or population abundances, this will ultimately increase the risk of extinction for populations and species. Assessing how environmental conditions influence spatiotemporal variation in trait values improves our mechanistic understanding of environmental impacts on populations.Peer reviewe

    Archiving primary data: solutions for long-term studies

    Get PDF
    The recent trend for journals to require open access to primary data included in publications has been embraced by many biologists, but has caused apprehension amongst researchers engaged in long-term ecological and evolutionary studies. A worldwide survey of 73 principal investigators (Pls) with long-term studies revealed positive attitudes towards sharing data with the agreement or involvement of the PI, and 93% of PIs have historically shared data. Only 8% were in favor of uncontrolled, open access to primary data while 63% expressed serious concern. We present here their viewpoint on an issue that can have non-trivial scientific consequences. We discuss potential costs of public data archiving and provide possible solutions to meet the needs of journals and researchers

    The great tit HapMap project: a continental‐scale analysis of genomic variation in a songbird

    Get PDF
    A major aim of evolutionary biology is to understand why patterns of genomic diversity vary within taxa and space. Large-scale genomic studies of widespread species are useful for studying how environment and demography shape patterns of genomic divergence. Here, we describe one of the most geographically comprehensive surveys of genomic variation in a wild vertebrate to date; the great tit (Parus major) HapMap project. We screened ca 500,000 SNP markers across 647 individuals from 29 populations, spanning ~30 degrees of latitude and 40 degrees of longitude – almost the entire geographical range of the European subspecies. Genome-wide variation was consistent with a recent colonisation across Europe from a South-East European refugium, with bottlenecks and reduced genetic diversity in island populations. Differentiation across the genome was highly heterogeneous, with clear ‘islands of differentiation’, even among populations with very low levels of genome-wide differentiation. Low local recombination rates were a strong predictor of high local genomic differentiation (FST), especially in island and peripheral mainland populations, suggesting that the interplay between genetic drift and recombination causes highly heterogeneous differentiation landscapes. We also detected genomic outlier regions that were confined to one or more peripheral great tit populations, probably as a result of recent directional selection at the species' range edges. Haplotype-based measures of selection were related to recombination rate, albeit less strongly, and highlighted population-specific sweeps that likely resulted from positive selection. Our study highlights how comprehensive screens of genomic variation in wild organisms can provide unique insights into spatio-temporal evolutionary dynamics

    Archiving Primary Data: Solutions for Long-Term Studies

    Full text link

    ï»żMetabolic rate, sleep duration, and body temperature in evolution of mammals and birds: the influence of geological time of principal groups divergence

    No full text
    This study contains an analysis of basal metabolic rate (BMR) in 1817 endothermic species. The aim was to establish how metabolic scaling varies between the main groups of endotherms during evolution. The data for all the considered groups were combined and the common exponent in the allometric relationship between the BMR and body weight was established as b = 0.7248. Reduced to the common slope, the relative metabolic rate forms the following series: Neognathae – Passeriformes – 1.00, Neognathae – Non-Passeriformes – 0.75, Palaeognathae – 0.53, Eutheria – 0.57, Marsupialia – 0.44, and Monotremata – 0.26. The main finding is that the metabolic rate in the six main groups of mammals and birds consistently increases as the geological time of the group’s divergence approaches the present. In parallel, the average body temperature in the group rises, the duration of sleep decreases and the duration of activity increases. BMR in a taxon correlates with its evolutionary age: the later a clade diverged, the higher is its metabolic rate and the longer is its activity period; group exponents decrease as group divergence nears present times while with increase metabolic rate during activity, they not only do not decrease but can increase. Sleep duration in mammals was on average 40% longer than in birds while BMR, in contrast, was 40% higher in birds. The evolution of metabolic scaling, body temperature, sleep duration, and activity during the development of endothermic life forms is demonstrated, allowing for a better understanding of the underlying principles of endothermy formation

    A Case of Secondary Epiretinal Membrane Spontaneous Release

    No full text
    Purpose. To report a rare case of secondary epiretinal membrane (ERM) spontaneous separation with subsequent visual restoration. Case Summary. We are reporting a case with the history of branch retinal vein occlusion, peripheral retinal neovascularization, and retinal photocoagulation. Our examination revealed secondary ERM associated with relatively high visual acuity (0.6), and a watchful waiting strategy was chosen. During the follow-up, slight visual deterioration, progressive deformation of the retinal profile, and an increase in diffuse retinal edema were observed. No surgical or laser treatment was performed. On the next visit, the spontaneous ERM separation with residual parapapillary fixation, the increase in visual acuity (0.9), and the decrease in retinal thickness were revealed. Conclusion. Such cases present additional evidence to a deferral surgical strategy for the management of patients with ERM and relatively high visual acuity
    corecore