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Models of ceramic-graphene nanocomposites are used to study how the manufacturing process-dependent 
arrangement of reduced graphene oxide (rGO) inclusions governs nano-crack network development. The work 
builds upon recent studies of such composites where a novel combinatorial approach was used to investigate 
the effect of rGO arrangements on electrical conductivity and porosity. This approach considers explicitly the 
discrete structure of the composite and represents it as a collection of entities of different dimensions - grains, 
grain boundaries, triple junctions, and quadruple points. Here, the combinatorial approach is developed further 
by considering the effects of rGO agglomerations, stress concentrators and adhesion energies on intergranular 
cracking. The results show that the fracture networks can be effectively controlled by the local ordering of rGO 
inclusions to allow for a concurrent increase in the strength and conductivity of the ceramic composites. It is 
shown that the ratio of local stress concentrators related to rGO inclusions and cracks is the most significant 
factor affecting the nano-crack network topology. The local spatial arrangement of rGO inclusions becomes an 
effective tool for controlling nano-crack network topology only when this ratio approaches one. It is anticipated 
that these results will inform future design of toughness-enhanced composites.
List of the used abbreviations and model variables

IFN induced fracture network

ISC local stress concentrators related to inclusions

CSC local stress concentrators related to nanocracks

rGO reduced graphene oxide

PCC polytopal cell complex

GB grain boundary

TJ triple junction

QP quadruple point

 tessellation of a 3-dimensional space by polyhedra

 PCC based on a tessellation 
𝑘 𝑘-skeleton of a PCC

𝑝,𝑓 fractions of inclusions and nanocracks, respectively

𝑝𝑎 fraction of GBs containing agglomerations of inclu-

sions

𝑝𝑚, 𝑝𝑣 mass and volume fractions of rGO powder in a com-

posite

𝐽𝑟
𝜔, 𝐽

𝑐
𝜔 triple junction 𝜔-types corresponding to 𝜔 ∈ {0, 1, 2, 3}

rGO inclusions and nanocracks on their co-boundary
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𝑗𝑟𝜔, 𝑗
𝑐
𝜔 fraction of 𝜔-type triple junctions containing inclu-

sions and nanocracks

𝐷𝑘 triple junction 𝑑-type corresponding to 𝑘 ∈ {1, 2, 3}
incident GBs of the same type in the network of in-

clusions or nanocracks

𝑑𝑟
𝑘
, 𝑑𝑐

𝑘
fraction of 𝑘-type triple junctions containing inclusions 
and nanocracks

𝐵𝐿,𝐶𝐿 grain boundary indices of inclusions and nanoracks, 
respectively

𝑆𝑟
𝑐𝑜𝑛𝑓

,𝑆𝑐
𝑐𝑜𝑛𝑓

TJ configuration entropies of inclusions and nanoc-

racks, respectively

𝜕𝑘, 𝛿𝑘 full incidence matrices of 𝑘-cells and their transposed 
counterparts

𝜕𝑘, 𝛿𝑘 reduced incidence matrices of 𝑘-cells and their trans-

posed counterparts

𝐿𝑘,𝐿𝑘 full and reduced 𝑘-th combinatorial Laplacian of a PCC

Γ𝑚, energy of ceramic matrix boundaries

Γ𝑟, energy of grain boundaries containing graphene inclu-

sions
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Γ𝑎, energy of grain boundary agglomerations having rGO-

rGO bounds

Σ𝑟, adhesion energy of the matrix-rGO grain boundaries

Σ𝑚, adhesion energy of the matrix-matrix grain boundaries

Σ𝑎, adhesion energy of the grain boundaries containing ag-

glomeration

𝐸𝑟𝑙,𝐸𝑐𝑙 , elastic energies of local stress concentrators related to 
inclusions and nanocracks, respectively

𝜂𝑟, 𝜂𝑐 , coefficients determining CSC and ISC

𝑊𝑏, topological grain boundary weight

1. Introduction

Brittle composites, such as polycrystalline ceramics, have low resis-

tance to cracking. Inclusions in ceramics are often used for improving 
a physical property. For example, the electrical conductivity can be 
increased by the introduction of highly-conductive inclusions in the 
low-conductive ceramic matrices. This is considered in the design of 
novel metal oxide electro-mechanical composites with inclusions of re-

duced graphene oxide (rGO) [1,2], and in graphene-enriched ceramics 
[3–12] which are candidates for advanced energy storage materials [1]. 
It has been suggested that the introduction of soft two-dimensional 
(2D) highly conductive inclusions into a three-dimensional (3D) hard 
ceramic matrix creates a composite with a unique combination of elec-

trical [5,6,10,12,13], thermal [14], and mechanical [2,4,7,10,11,15]

properties. In different modifications, graphene-ceramic composites can 
be utilised as the new catalyst promising for its applications in low-

temperature fuel cells [16] or membrane nano-filters made of alumina 
nano-composite [17] useful for drinking water decontamination and 
other biotechnological applications [18]. Among their other applica-

tions are surface renewable electrodes [19], energy storage materials, 
electronic devices [19], and bioceramic scaffolds with reinforced os-

teoinductivity [20]. All these applications benefit from the synergy of 
the corresponding functional (electrical, chemical, biological) proper-

ties and mechanical resilience to fracture [21,22]. However, it is gen-

erally expected that the addition of inclusions, which can be viewed 
as initial matrix damage, would decrease further the apparent fracture 
toughness and thus reduce the load-baring capacity of the composite. 
Increasing the resistance of ceramic composites to cracking is a signif-

icant challenge, which must be addressed to facilitate the effective use 
of ceramic composites in many critical areas. Some recent works [3–6]

have shown that an advanced design, which accounts not only for the 
fraction of inclusions and their types but also for their spatial arrange-

ments [3,4], can improve simultaneously the strength and the electrical 
conductivity.

From a different perspective, cracking is the main energy dissipa-

tion mechanism in brittle materials [23]. It increases their dynamic 
strength, which makes the development of fractal-like crack networks 
desirable in many automotive, defence, and aerospace applications. Be-

cause cracking in brittle polycrystalline materials is predominantly in-

tergranular, i.e., along grain boundaries (GBs), decreasing the grain size 
down to the nano-meter range would increase significantly the energy 
dissipation capacity of a fracture network. Arrangement of 2D defects 
on GBs, attached to grains with weak adhesive forces [24], could be a 
suitable approach for managing the development of fracture network 
that optimises both the energy dissipation and the load-bearing capac-

ity of the composite. The design of optimal arrangements requires an 
approach for relating arrangement characteristics and energy dissipa-

tion capacity of the network of micro- and nano-cracks. The commonly 
used continuous and mesoscale approaches [25,26] are not able to meet 
this requirement. A novel discrete approach based on the representation 
of polycrystalline materials as combinatorial cell complexes, developed 
recently [27,28], makes it possible to analyse the effect of defect distri-

butions and their multi-dimensional interactions [3,4] on the materials 
2

fracture parameters.
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Fig. 1. Voronoi tessellation of a cube constructed by Neper [32], with two 
planar cuts.

The aim of this work is to understand better and describe the frac-

ture development in graphene-ceramic nanocomposites, which have 
been previously shown to exhibit excellent electrical and strength prop-

erties, but have not been optimised for fracture resistance via inclusions 
arrangement. The study material is Al2O3 ceramic composite with rGO 
inclusions. The method for description and topological analysis of poly-

crystalline assemblies, viewed as collections of discrete entities with 
different dimensions, is outlined in Section 2. The computational re-

sults based on the method are presented in Section 3, together with a 
discussion on the relationships between the arrangements of rGO inclu-

sions and the fracture networks developing under the action of external 
loads. The results support a conclusion on the critical factor for com-

posite strength and a choice of optimal design strategy between: (i) 
decreasing the number of agglomerations of inclusions, which are weak 
spots for fracture initiation and (ii) decreasing the number of stress con-

centrators at triple junctions of grain boundaries. The study is focused 
on the effect of stress concentrators, while any dynamic features are 
neglected.

2. Methods for description and analysis of ceramic composites

2.1. Ceramic composites as polytopal cell complexes

The mathematical description of composites follows the works [3,

27–29]. The microstructure is considered as a collection of connected 
elements of different dimensions: 3D grains, 2D grain boundaries (GBs), 
1D triple junctions (TJs) [30], and 0D quadruple points (QPs) [31].

A model microstructure is created by tessellating a given spatial do-

main into convex polytopes so that the shapes and sizes of the polytopes 
represent statistically the elements of a real microstructure [1,5,6]. The 
free open-source software Neper [32] is used in this work to create 
Voronoi tessellations of spatial domains [33,34], which provide reli-

able representations of microstructures [35]. A tessellation,  , contains 
polyhedrons, i.e., 3D polytopes representing grains, faces, i.e., 2D poly-

topes representing GBs, edges, i.e., 1D polytopes representing TJs, and 
nodes, i.e., 0D polytopes representing QPs. In the language of algebraic 
topology, the polytopes of dimension k are referred to as k-cells and 
is referred to as a polytopal cell complex (PCC) [36,37]. Fig. 1 shows 
a tessellation of a cube containing 3,000 3-cells (grains), 22,057 2-cells 
(GBs), 38,116 1-cells (TJs) and 19,060 0-cells (QPs), together with two 

planar cuts for future reference.
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Fig. 2. Illustration of skeletons of a single polyhedron (3-cell). Note, the 3-skeleton of  is identical with .
The connectivity of the cells in  is given by incidence matrices, 
𝜕𝑘, referred also as the boundary operators, which relate the 𝑘-cells to 
the (𝑘 − 1)-cells on their boundaries for 𝑘 ∈ {1, 2, 3}. The cells in  and 
the incidence matrices form a mathematical structure, , referred to 
as 3-complex [36].

A 𝑘-skeleton of  is the collection of all 𝑚-cells for 0 ≤𝑚 ≤ 𝑘. Skele-

tons of all dimensions are illustrated in Fig. 2, using a single 3-cell. A 
2-skeleton is of particular interest in this work as it contains all GBs, 
TJs, and QPs. The connectivity between the cells of a 𝑘-skeleton can 
be described by adjacency matrices known from the graph and network 
theories [38,39]. A software library for construction of incidence and 
adjacency matrices for cell complexes and their skeletons can be down-

loaded from the web project [40].

Different physical components of a ceramic composite are intro-

duced by assigning identification numbers (IDs) to the cells in . For 
example, a simple binary classification of GBs used in [3] leads to iden-

tifying all 2-cells as either ordinary (between ceramic grains) or special 
(containing rGO inclusions). The focus here is on rGO inclusions on 
GBs, possible cracks along GBs, and potential conglomerations of rGO 
inclusions on GBs. Thus, four different IDs for 2-cells are used: (i) 𝐹0
for inclusion-free GBs of nanocrystalline ceramic composite; (ii) 𝐹1 for 
grain boundaries containing single rGO inclusions; (iii) 𝐹2 for cracked 
grain boundaries (either containing inclusions or inclusion-free; and (iv) 
𝐹3 for GBs containing agglomerations of rGO inclusions. The fraction of 
2-cells of type 𝐹1 (with rGO inclusions) will be denoted by 𝑝, and the 
fraction of 2-cells of type 𝐹2 (with cracks, with or without inclusions) 
will be denoted by 𝑓 . These are given by

𝑝 =
𝑁𝑟

𝑁2
, 𝑓 =

𝑁𝑐

𝑁2
, (1)

where 𝑁𝑟 is the number of 2-cells of type 𝐹1, 𝑁𝑐 is the number of 2-cells 
of type 𝐹2, and 𝑁2 is the total number of 2-cells in the cell complex. 
A separate notation, 𝑝𝑎, will be used for the fraction of GBs containing 
agglomerations of rGO inclusions.

2.2. Topological analysis of substructures

The incidence matrices, 𝜕𝑘, introduced in Subsection 2.1 provide a 
practical mathematical tool for topological analysis of cell complexes 
[3,41]. The 𝑘-th combinatorial Laplacian is given by [41]

𝐿𝑘 = 𝜕𝑇
𝑘
⋅ 𝜕𝑘 + 𝜕𝑘+1 ⋅ 𝜕

𝑇
𝑘+1, (2)

with two special cases: 𝐿0 = 𝜕1 ⋅ 𝜕
𝑇
1 , and 𝐿3 = 𝜕𝑇3 ⋅ 𝜕3. 𝐿𝑘 is a positive 

semi-definite linear operator (square matrix) that maps all 𝑘-cells to 
themselves, collecting local connectivity information. The eigenvalues 
of 𝐿𝑘 are non-negative real numbers, which provide the essential infor-

mation about the topology formed by the 𝑘-cells [42]. The dimension of 
the nullspace of 𝐿𝑘, i.e., the number of the zero eigenvalues, equals the 
𝑘-th Betti number, 𝛽𝑘. In particular, 𝛽0 gives the number of connected 
components of the cell complex, 𝛽1 gives the number of closed loops 
formed by 1-cells, and 𝛽2 provides the number of closed loops formed 
3

by 2-cells, i.e., volumes closed by 2-cells [38].
𝐿𝑘 contains the topological characteristics of the whole 𝑘-skeleton, 
whereas the model of a ceramic composite has 2-cells of different types. 
The 2-cells of a given type form a substructure which is described by 
reduced incidence matrices 𝜕𝑘. The null space of the corresponding re-

duced Laplacians 𝐿𝑘 = 𝜕𝑇
𝑘
⋅𝜕𝑘+𝜕𝑘+1 ⋅𝜕

𝑇
𝑘+1 gives the Betti numbers [43]:

𝛽𝑘 = Dimension
(

Nullspace
(
𝐿𝑘

))
. (3)

Taking the substructure formed by 2-cells of type 𝐹2 (cracked GB) as an 
example, 𝛽0 gives the number of disconnected cracks spanning one or 
more 2-cells, and 𝛽2 gives the number of 3-cells fully bounded by cracks, 
i.e., loose material fragments. A derivative topological characteristics is 
the inverse connectivity [44–46]:

𝐼𝑐 = ln
(
𝛽0
𝛽2

)
, (4)

whose negative values indicate high connectivity in the considered 
structure.

In-house, open-source codes were used for the construction of cell 
complexes and substructures: Polyhedral Cell Complex (PCC) Analyser

[47] (in Python) for construction and analysis of cell complexes from 
Voronoi tessellations made by Neper [32]; PCC Processing Design mod-

ule [48] (in C++) for assignment of IDs to 2-cells and construction of 
corresponding substructures; and Discrete Fracture Kinetic (DFK) module 
[49] (in C++) for simulation of intergranular fracture. All modules are 
freely available from the PRISB project repository on GitHub [50]. The 
Betti numbers of substructures are calculated by the Processing Design 
module [48], which uses two additional C++ libraries – Eigen [51] and 
Spectra [52] to allow for calculating the spectra of large sparse matri-

ces.

2.3. Grain boundary failure

The properties determining the propensity for GB cracking are the 
cohesive energies of different constituents [30]. The matrix-matrix 
boundaries of Al2O3 can be of two types - ‘alpha’ and ‘gamma’ [53]. 
The experimental estimates for the cohesive energies of these bound-

aries are 2.6 J/m2 and 1.6 J/m2, respectively [54]. As we consider these 
boundaries to be of one type, 𝐹0, an averaged value of these experimen-

tal energies is used as cohesive energy - Γ𝑚 = 2.0 J/m2. The measured 
adhesive energies for rGO-Al2O3 interfaces vary between 0.46 J/m2

and 1.25 J/m2 depending on the thermal treatments of the compos-

ite [55]. An average value is used to represent the cohesive energy 
of GBs containing a single rGO, i.e., boundaries of type 𝐹1 - Γ𝑟 = 1.0
J/m2. The experimental estimate for the surface energy of rGO is 0.18
J/m2 [24]. Therefore, the cohesive energy of rGO-rGO agglomerates 
can be estimated to be approximately double the surface energy. The 
cohesive energy for GBs containing rGO agglomerations, i.e., bound-

aries of type 𝐹3 is selected to be Γ𝑎 = 0.4 J/m2. It is accepted that the 
boundaries containing agglomerations have a dramatic effect on the 
composite strength [1].

The fracture energy Σ𝑔𝑏 of a GB, i.e., the energy required for crack-

ing, would be equal to the cohesive energy in the absence of other 

factors. However, it is well-known that stress concentrators, such as 
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crack tips and agglomerations of inclusions affect significantly the ce-

ramic composite fracture process [4]. This can be viewed as a reduction 
of the energy required for cracking of a GB by the elastic energy of 
the local stress concentrators, 𝐸𝑔𝑏. Thus, Σ𝑔𝑏 = Γ𝑔𝑏 − 𝐸𝑔𝑏. Failure of a 
GB occurs when the local stress due to external forces becomes equal 
to its fracture energy. The effect of external loading is not calculated 
explicitly. Instead, a simple fracture analysis is performed, whereas at 
each simulation step the GB with the lowest fracture energy fails first. 
The fracture process is thus represented as a consecutive formation of 
nanocracks along GBs, starting with fraction 𝑓 = 0 and continuing un-

til 𝑓 ≤ 𝑓𝑐 , where 𝑓𝑐 is a pre-defined critical value of 𝑓 . Such a simple 
formulation is sufficient for studies of the fracture network topologies 
formed at given specific fractions of 𝑝 and 𝑓 . We will refer to this model 
as a kinematic one. The following Subsection 2.4 will address the kine-

matic approach to structure characterisation allowing to study effect of 
inclusion patterns on the corresponding IFN topology.

2.4. Elastic energy of stress concentrators

In a PCC created by Voronoi tessellation, each 1-cell (TJ) is a meet 
of maximum three of 2-cells (GBs), and each 0-cell (QP) is a meet of 
maximum four 1-cells (TJs) and six 2-cells (GBs) [3,34,56]. A binary 
classification of 2-cells, e.g., as ordinary and special types, generates 
four types of 1-cells 𝐽𝜔, as meets of 𝜔 ∈ {0, 1, 2, 3} special 2-cells [3,

56], and 11 types of 0-cells [31]. Thus, a 1-cell with 𝐽1 is an end of 
the network of special GBs, a 1-cell with 𝐽2 is an internal TJ in the 
network of special GBs without local branching, and 𝐽3 is an internal TJ 
where the network of special GBs branches. In this work, we distinguish 
between 𝐽𝑟

𝜔 for 1-cells where 2-cells with 𝜔 ∈ {0, 1, 2, 3} rGO inclusions 
meet, and 𝐽𝑐

𝜔, for 1-cells where 2-cells with 𝜔 ∈ {0, 1, 2, 3} nanocracks 
meet.

The effect of stress concentrators is considered by the introduction 
of structural indices of 2-cells, similarly to the work [3], where they 
were first associated with stress concentrators around GBs increasing 
the propensity for cracking. Let 𝛼, 𝛽, and 𝛾 denote the numbers of 1-

cells on the boundary of a 2-cell of types 𝐽𝑟
1 , 𝐽𝑟

2 and 𝐽𝑟
3 , respectively. 

The GB index characterising the concentration of internal stresses due 
to inclusions around a single GB is defined as

𝐵𝐿 = 𝛼 + 2𝛽 + 3𝛾 (5)

Notably, the GB index 𝐵𝐿 can be used to detect the presence of rGO 
agglomeration in a GB. A simple geometrical consideration suggests that 
(i) if a GB already contains an rGO inclusion this makes all its TJ of 
either 𝐽1, 𝐽2 or 𝐽3 type, and (ii) if a GB has more than two TJs of type 𝐽2, 
it is highly probable that it contains at least two rGO layers. According 
to Eq. (5), this condition must be satisfied when 𝐵𝐿 ≥ 6. Therefore, it is 
assumed during the calculations that a GB containing an rGO inclusion 
contains an agglomeration of inclusions if 𝐵𝐿 > 9, i.e., if more than 3 
adjacent GBs have TJs of type 𝐽3.

Similarly, let 𝜇, 𝜆 and 𝛾 denote the numbers of 1-cells in the bound-

ary of a 2-cell of types 𝐽𝑐
1 , 𝐽𝑐

2 and 𝐽𝑐
3 , respectively. The GB index 

characterising the concentration of internal stresses due to nanocracks 
around a single GB is defined as

𝐶𝐿 = 𝜇 + 2𝜆+ 3𝛾, (6)

An illustration of GBs with the corresponding GB indices is shown in 
Fig. 3. These definitions do not account for the variety of GBs geome-

tries, which may range from triangles to polygons with many edges. It 
is therefore appropriate to normalise them using the number of neigh-

bours of the 2-cell, 𝑊𝑏, which corresponds to the its topological weight 
introduced in [57]. The normalised indices have values less or equal 
to 1.

We assume that the elastic energies of the stress concentrators acting 
4

locally on GBs, 𝐸𝑟𝑙 and 𝐸𝑐𝑙 , depend only on these indices:
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𝐸𝑟𝑙 = 𝜂𝑟 ⋅
𝐵𝐿

𝑊𝑏

, (7)

𝐸𝑐𝑙 = 𝜂𝑐 ⋅
𝐶𝐿

𝑊𝑏

, (8)

where 𝜂𝑟 and 𝜂𝑐 are coefficients determining ISC and CSC, respectively. 
These coefficients are defined using the corresponding cohesive ener-

gies as

𝜂𝑚𝑟 = 𝐶𝑟Γ𝑚, 𝜂𝑟𝑟 = 0 (9)

𝜂𝑚𝑐 = 𝐶𝑐Γ𝑚, 𝜂𝑟𝑐 = 𝐶𝑐Γ𝑟, (10)

where 𝜂𝑚𝑟 and 𝜂𝑟𝑟 are the 𝜂𝑟 values of matrix-matrix (ordinary) GBs and 
GBs contain rGO inclusion, respectively, and 𝜂𝑚𝑐 and 𝜂𝑟𝑐 are the corre-

sponding 𝜂𝑐 values; 𝜂𝑟𝑟 = 0 due to the assumption that if a GB contains 
rGO inclusions, the presence of rGO inclusions in the neighbouring GBs 
does not create further elastic stresses at this boundary.

The coefficients 𝐶𝑟 and 𝐶𝑐 are greater than 1. If one of these be-

comes equal to 1, the sum of the corresponding elastic energies of the 
stress concentrators in a GB, 𝐸𝑟𝑙 or 𝐸𝑐𝑙 , becomes equal to the corre-

sponding cohesive energy, Γ𝑚 or Γ𝑟, leading to GB fracture. A value 
of 𝐶𝑟 or 𝐶𝑐 equal to 2 leads to fracture if only half of the neigh-

bouring GBs contain inclusions or cracks. The high stress concentration 
created by agglomerations of inclusions is not given separate considera-

tion, because they normally fracture first and so effectively act on their 
neighbours by increasing their 𝐶𝐿 indices. To the best of the authors’ 
knowledge, there is no reliable experimental data to date for energies 
related to stress concentrators in Al2O3/rGO ceramic composites. Their 
values can be very different depending on the particular material, GB 
size and rGO powder characteristics. As a starting point, we consider 
𝐶𝑟 = 1 and 𝐶𝑐 = 2. This selection makes cracks in neighbouring GBs 
twice more “dangerous” than rGO inclusions. It corresponds to qualita-

tive experimental observations of ceramic composite fracture reported 
in [1]. It will be shown that the CSC to ISC ratio plays a prominent 
role in the inclusion-mediated process of fracture development, and ac-

tually determines the ability to manage crack network topology by the 
changes in the spatial arrangement of inclusions.

With the introduced elastic energies of stress concentrators, the frac-

ture energy of a GB without inclusions (ordinary matrix-matrix GB) is

Σ𝑚 = Γ𝑚 −𝐸𝑟𝑙 −𝐸𝑐𝑙, (11)

of a GB with a single rGO inclusion is

Σ𝑟 = Γ𝑟 −𝐸𝑐𝑙, (12)

and a GB with agglomeration of inclusions is

Σ𝑎 = Γ𝑎 −𝐸𝑐𝑙. (13)

2.5. Configurations of inclusions

The placement of rGO inclusions on 2-cells is either unconstrained, 
i.e., they are randomly distributed, or subject to a condition that the 
distribution minimises or maximises the configurational entropy [29,

31,56].

The definition of configurational entropy due to rGO inclusions uses 
the fractions of TJ types, given by

𝑗𝑖 =
𝑁𝑖

𝑁𝑎𝑙𝑙

, (14)

where 𝑁𝑖 is the number of TJs of type 𝐽𝑟
𝑖
, 𝑁𝑎𝑙𝑙 is the total number of 

TJs in the PCC. The configurational entropy due to rGO inclusions is 
defined by

𝑆𝑐𝑜𝑛𝑓 = −(𝑗0 ⋅ 𝑙𝑜𝑔2𝑗0 + 𝑗1 ⋅ 𝑙𝑜𝑔2𝑗1 + 𝑗2 ⋅ 𝑙𝑜𝑔2𝑗2 + 𝑗3 ⋅ 𝑙𝑜𝑔2𝑗3). (15)

The entropy is a non-monotonous function of 𝑝, with maximum at 

𝑝 = 0.5 independent of the material’s microstructure [58]. It is an in-
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Fig. 3. A sketch of a defect-free grain boundary (left) and a grain boundary containing inclusion (right) with the corresponding values of GB indices 𝐵𝐿 and 𝐶𝐿 .
tensive microstructure characteristic and its value is independent of the 
PCC size, providing the size is sufficiently large to represent statistically 
the microstructure. The entropy corresponds to the Shannon informa-

tion entropy [56,59], and its value represents the amount of information 
encoded in the material’s defect microstructure. The choice of the loga-

rithm base affects only the units of the configuration entropy; with base 
2, 𝑆𝑐𝑜𝑛𝑓 expresses the information content in bits [59].

The configurational entropy can have maximum and minimum val-

ues for a particular fraction 𝑝. These will be denoted by 𝑆𝑚𝑎𝑥 and 𝑆𝑚𝑖𝑛, 
respectively. In addition, 𝑆𝑟𝑛𝑑 will denote the value of the entropy of 
randomly distributed inclusions with fraction 𝑝.

The configuration with maximum entropy at a given 𝑝 is realised 
by assigning special GBs satisfying the principle of maximum entropy 
production (MEPP) [56,58,60]. To obtain the minimum entropy for a 
given 𝑝, we decompose 𝑆𝑐𝑜𝑛𝑓 into two parts [61]:

𝑆𝑐𝑜𝑛𝑓 = 𝑆𝑚 +𝑆𝑑, (16)

where 𝑆𝑚 is a log geometric mean part given by

𝑆𝑚 = 1
4
𝑙𝑜𝑔2(𝑗0𝑗1𝑗2𝑗3), (17)

and 𝑆𝑑 is a divergence part, describing the deviation of TJs fractions 
from a homogeneous distribution, given by [61]

𝑆𝑑 =
1
4
∑
𝑘<𝑙

(𝑗𝑘 − 𝑗𝑙)𝑙𝑜𝑔2
(
𝑗𝑘
𝑗𝑙

)
= −

3∑
𝑘=0

(
𝑗𝑘 −

1
4

)
𝑙𝑜𝑔2

(
4𝑗𝑘

)
. (18)

Notably, 𝑆𝑐𝑜𝑛𝑓 is maximum when the fractions of TJs of all types are 
equal. The divergence 𝑆𝑑 is negative and measures the distance of a 
structure from one with maximum configurational entropy. Maximising 
𝑆𝑑 for a given 𝑝, gives the minimum 𝑆𝑚𝑖𝑛(𝑝). This is used to construct 
a reference configuration with minimum configurational entropy by as-

signing GBs that maximise 𝑆𝑑 .

The random distribution of rGO inclusions provides a benchmark for 
characterising other specific distributions of special GBs in grain bound-

ary networks (GBN) [3,29,31,62]. The fractions of TJs as functions of 
fraction 𝑝 in the random case satisfy the equations [31]:

𝑗0 = (1 − 𝑝)3, 𝑗1 = 3𝑝(1 − 𝑝)2, 𝑗2 = 3𝑝2(1 − 𝑝), 𝑗3 = 𝑝3, (19)

where 𝑗0 + 𝑗1 + 𝑗2 + 𝑗3 = 1. The entropy of the random distribution can 
be expressed directly in terms of 𝑝 by substituting Eq. (19) into Eq. (15)

[3].

The three entropies 𝑆𝑚𝑎𝑥, 𝑆𝑚𝑖𝑛 and 𝑆𝑟𝑛𝑑 as functions of the rGO 
fraction 𝑝 correspond to three different reference configurations resulting 
from distinct governing principles of rGO spatial arrangement. They are 
appropriate for characterising other configurations or designs of inclu-

sion networks. The numerical analysis will use them for studies of how 
these initial configurations affect the induced crack network topology 
in the same PCC. The PCC Processing Design code [48] has been used 
5

to obtain the three rGO configurations.
In addition to the classification of TJs into types 𝐽𝑖, a derivative 
classification will be used in the calculations and results. Consider only 
one GB network of a specific type, 𝐹0, 𝐹1 or, 𝐹2, the TJs in this sub-

structure can be classified according to the number of incident GBs of 
the same type. Thus, the “free leafs” have type 𝐷1, branches or loops 
connected by 𝐽2 junctions have type 𝐷2, and 𝐽3 junctions have type 
𝐷3. Let the fractions of TJs of type 𝐷𝑘 be denoted by 𝑑𝑘. The fraction 
𝑑𝑟
𝑘

as a function of 𝑝 characterises the network of GBs containing rGO 
inclusions. Similarly, the 𝑑𝑐

𝑘
as a function of 𝑓 characterises the network 

of cracked GBs. The main difference between the 𝑑𝑘 classification and 
the conventional 𝑗𝜔 classification (see Eqs. (14), is that in the former 
only specific GBs are considered as if there were no GBs of other types 
in a PCC. The fractions 𝑑𝑟

𝑘
and 𝑑𝑐

𝑘
can be calculated directly from the 𝑗𝑟𝜔

and 𝑗𝑐𝜔 fractions as

𝑑𝑟
𝑘
=

𝑗𝑟
𝑘

1 − 𝑗𝑟0
, (20)

and

𝑑𝑐
𝑘
=

𝑗𝑐
𝑘

1 − 𝑗𝑐0
. (21)

Therefore, at large values of 𝑗0, even small fractions 𝑗𝜔 can give large 
fractions of the corresponding 𝑑𝑘.

2.6. Mapping mass fraction of rGO powder to fraction of rGO inclusion

The introduced fraction of faces covered with inclusions, 𝑝, is a char-

acteristic not measurable directly in experiments. Instead, the mass 𝑝𝑚
and volume 𝑝𝑣 fractions of rGO powder are widely used. To calculate 𝑝
corresponding to experimentally measured mass fraction of inclusions 
𝑝𝑚, the following relation was proposed [3]:

𝑝 = 𝑝𝑚𝑑
2𝜌

𝜅𝜌𝐺ℎ𝐺
, (22)

where 𝜅 = 83 is a geometric factor that takes into account sphericity of 
the Voronoi polyhedrons; 𝜌𝐺 is the density of rGO, which is close to the 
density of graphite, i.e., 𝜌𝐺= 2266 𝑘𝑔∕𝑚3; 𝜌 is the density of Al2O3
ceramics, i.e., 𝜌 = 3990 kg/m3; and ℎ𝐺 is the rGO platelet thickness, 
assumed to be constant ℎ𝐺 = 3 nm (about a dozen atomic layers). The 
relation between the volume fraction 𝑝𝑣 and the mass fraction 𝑝𝑚 of 
inclusions, if required, is given by

𝑝𝑣 = 𝑝𝑚
𝜌

𝜌𝐺
. (23)

In the calculations, the mass fractions of 1% and 3% of rGO inclusions, 
achieved experimentally in Al2O3 composites [5], are used. These cor-
respond to 𝑝 ≈ 0.1 and 𝑝 ≈ 0.2, respectively.
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3. Results and discussion

Several factors significantly affect a ceramic composite’s resistance 
to cracking. In particular, two factors commonly assumed contributing 
predominantly to the fracture process: (i) the agglomerations of inclu-

sions with fraction 𝑝𝑎 – as the weakest sites where cracks can be easily 
nucleated (see Eq. (13)), and (ii) the presence of local stress concen-

trators originated from inclusions and cracks, which were expressed in 
the developed fracture model by the value of GB indices 𝐵𝐿 and 𝐶𝐿

(Eqs. (5) and (6)). For addressing materials design tasks, the questions 
about the significance of both aforementioned factors in their relation to 
spatial distribution of inclusions and structural characteristics of crack 
network topology should be resolved. The fraction of rGO inclusions 𝑝
contributes to both of these factors.

The possibility of managing effectively IFN development by changes 
in the local ordering (patterning) of inclusions is another key point 
of our consideration. Polycrystalline ceramic composites technologi-

cally often do not allow implementation of any kind of prescribed 
3-dimension structure of inclusions, but the creation of random-like 
patterns deviating from the random case just in their local rGO arrange-

ments is a much more feasible task. Besides the random distribution, 
two other reference configurations obtained by the maximum (S-max) 
and minimum (S-min) configuration entropy production principles will 
be discussed. They were obtained by the PCC Processing Design code 
[48] as described previously in Subsection 2.5.

For all the performed simulations, a statistically representative 
1000-polyhedron and 3000-polyhedron (see Fig. 1) Laguerre-Voronoi 
tessellations of a 3-dimensional cube containing more than 12,000 faces 
and created by Neper software [32] have been used. These tessellations 
serve us as discrete spaces, replacing conventional continuous mani-

folds, and can be created just once. All the adjacency, incidence and 
Laplacian matrices (see Subsection 2.2) of the corresponding PCC were 
provided by the Voronoi PCC Analyser code [47].

In the current study, the action of external forces is not considered 
explicitly, which was referred to as a kinematic model. The energies 
of each GB were calculated by Eqs. (7) - (9) with accounting for stress 
concentrators effect as it was described in Subsection 2.4. It is assumed 
that the GBs with lower adhesion energies fracture first, which provides 
a specific set of GBs for each predefined value of nanocracks fraction 
𝑓 depending on their spatial arrangement (topology) and the fraction 
𝑝 of rGO inclusions in the undamaged material, as discussed in Subsec-

tion 2.3.

To provide a comprehensive analysis of the primal rGO and imposed 
IFN nanocrack microstructures, several tools described in Section 2

have been used: TJ degree distributions 𝑑𝑘, Betti numbers 𝛽𝑖, and the 
inverse connectivity 𝐼𝑐 (see Subsection 2.2) in their dependence on the 
fractions of inclusions 𝑝 and cracks 𝑓 . The following Subsections 3.1 – 
3.3 explores the IFN development in the case of the random distribu-

tion of rGO inclusions, while the Subsection 3.4 investigates the effects 
of non-random spatial arrangements of inclusions.

3.1. Fracture network development at the random spatial distribution of 
rGO inclusions

Let us begin the study with the random spatial distribution of rGO 
inclusions typical for the composites manufactured in the experimental 
works, where the use of non-random arrangements of rGO is still rare. 
The results in this subsection have been obtained for the rGO-Al2O3
ceramic composite and the set of adhesion energies (Γ𝑚 = 2.0 J/m2, 
Γ𝑟 = 1.0 J/m2, and Γ𝑎 = 0.4 J/m2) as described in the methodology 
Section 2. The value of the coefficient 𝐶𝑐 of crack-related stress concen-

trators (CSC) has been taken equal to 𝐶𝑐 = 2𝐶𝑟 – twice larger than the 
corresponding value of the coefficient 𝐶𝑟 of the strength of inclusion-

related stress concentrators (ISC).

Let us refer to a GB network state any dot in the ternary TJ space 
6

with the corresponding values of 𝑑𝑟 = {𝑑𝑟1, 𝑑
𝑟
2, 𝑑

𝑟
3} or 𝑑𝑐 = {𝑑𝑐1 , 𝑑

𝑐
2 , 𝑑

𝑐
3}
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uniquely representing the degree fractions of nodes of different 𝑘 =
{1, 2, 3} 𝑑-types in the rGO inclusion network 𝑑𝑟

𝑘
or the IFN of nanoc-

racks 𝑑𝑐
𝑘
. Fig. 4a shows two equivalent representations of the 𝑑𝑟

𝑘
degree 

fraction evolution with 𝑝 at the random spatial distribution of inclusions 
– three 𝑑𝑟

𝑘
(𝑝) plots for 𝑘 = {1, 2, 3} and the corresponding TJ space con-

taining GB state points with coordinates 𝑑𝑟 [44]. In the random case, 
𝑑1 degree fractions decrease almost linearly with 𝑝, and both the other 
𝑑2 and 𝑑3 fractions are relatively small at low fractions of 𝑝.

Every initial configuration of inclusions, characterising by the frac-

tion 𝑝 and the inclusion state vector {𝑑𝑟1, 𝑑
𝑟
2, 𝑑

𝑟
3} induces its own topol-

ogy of the IFN of nanocracks characterising by the fraction 𝑓 and the 
state vector of nanocracks {𝑑𝑐1 , 𝑑

𝑐
2 , 𝑑

𝑐
3}. As a supporting characteristic, 

revealing the IFN topology, Betti numbers 𝛽𝑖 were calculated in several 
cases. It is the most resource-intensive part of the calculations required 
to create Laplacian matrices of a PCC and find their spectra [42] for 
each value of 𝑝 and 𝑓 . Both evolutions of degree fractions (Fig. 5a) and 
topological characteristics (Fig. 5b) of the IFN in the particular case of 
𝑝 = 0.2 randomly distributed rGO inclusions are shown in Fig. 5. Here 𝛽0
shows the number of separate components, which appears to be equal 
to 1 in the random case; the value 𝛽1 is equal to zero everywhere show-

ing the absence of loops made of nanocracks; and 𝛽2 shows the large 
numbers of closed areas which are the fragmented parts of the compos-

ite. The characteristic of the inverse connectivity 𝐼𝑐 = ln(𝛽0∕𝛽2) reveals 
the growth rate of the crack network connectivity, and the random case 
possesses a high value of it. The value 𝛽0 = 1 does mean that at the ran-

dom spatial distribution of inclusions a whole fraction process develops 
as a growth of a single fracture component, and there is only one cen-

tre of the fracture initiation. It will be shown that it is very different 
for the other spatial arrangement of inclusions and quite the opposite 
in the case of the lower CSC.

Ternary nanocrack degree spaces {𝑑𝑐1 , 𝑑
𝑐
2 , 𝑑

𝑐
3} shown on Fig. 6 pro-

vides more comprehensive (for several rGO fractions 𝑝 = {0.1,0.2,0.3,
0.4}) and detailed description of the IFN evolution – changing both with 
the changes of induced crack fraction 𝑓 and primal rGO inclusion frac-

tion 𝑝. As was discussed in the Introduction section, fracture topology 
is a key factor influencing the amount of energy dissipated in the mate-

rial during fracture: long, low-branching cracks (high 𝑑2) are the most 
dangerous, while the fractal-like structures, possessing a high number 
of branches (high 𝑑3 value), are optimal in terms of material resistance 
to fracture.

In the random case, the nanocrack network topology at large 
fractions of cracked GBs 𝑓 ≈ 0.3 − 0.4 remains almost independent 
on the primal rGO fraction, moving IFN states towards the point 
{0.1, 0.05, 0.85}. The scatter of states achieved by the changes of a 
primal fraction of rGO inclusions 𝑝 considerably decreases with the 
increasing of 𝑓 as the result of fracture process development. Among 
the interesting features observed in the random case, is that the IFN 
evolution at 𝑝 = 0.1 is similar to the one that occurred at 𝑝 = 0.4 and 
possessed an almost constant fraction of 𝑑𝑐2 ≈ 0.05, but qualitatively dif-

ferent from the cases 𝑝 = 0.2 where the IFN develops almost at constant 
degree fraction 𝑑𝑐1 ≈ 0.125.

3.2. Effect of agglomerations of rGO inclusions

By their definition, agglomerations are the GBs containing more 
than two graphene layers. It is commonly accepted that agglomerations 
of inclusions contribute to the degradation of a composite’s strength. 
The fraction of GBs containing agglomerations 𝑝𝑎 depends equally on 
the fraction of inclusions 𝑝, their geometry (length, aspect ratio, etc.) 
and spatial arrangement. In the random case, slow growth of 𝑝𝑎 starts 
at 𝑝 ≈ 0.08 as it can be seen in Fig. 11b in Subsection 3.4.

To show the effect of agglomerations on the fracture development 
process, let us effectively remove them from the calculation process 
simply assuming that GBs containing agglomerations now possess ad-

hesive energies equal to the adhesive energy of all other GBs containing 

rGO inclusions (1 J/m2 in Al2O3) – making it 2.5 times greater than the 
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Fig. 4. (a) Inclusions degree distributions 𝑑𝑟
𝑘

at their random spatial distribution as the function of rGO fraction 𝑝, and (b) another representation of 𝑑𝑟
𝑘

as GB state 
points {𝑑𝑟1, 𝑑𝑟2, 𝑑𝑟3} in the ternary TJ degree space. Here four symbols correspond to the different values of the inclusion fraction 𝑝 = {0.1, 0.2, 0.3, 0.4}.

Fig. 5. (a) Evolution of the degree fractions 𝑑𝑐
𝑘

of the IFN of nanocracks, and (b) evolution of the topological characteristics 𝛽𝑘 and 𝐼𝑐 of the same IFN for the random 
distribution of inclusions with 𝑝 = 0.2. A whole fraction process develops as a growth of a highly connected (low 𝑑 and 𝑑 ) single fracture component (𝛽 = 1).
former agglomeration adhesive energy 0.4 J/m2. Experimentally, the 
effect of agglomerations can be mitigated by increasing the adhesive 
energies between rGO layers by changing their chemical processing and 
the composite manufacturing technology. Fig. 7 shows the ternary plot 
for the random case similar to Fig. 6. It can be seen, that the presence 
of agglomerations does not change the fracture process dramatically. At 
a large fraction of 𝑓 , IFN states move to the same fraction 𝑑𝑐

𝑘
as before 

(Fig. 6), but what is important – the absence of agglomeration removes 
the large scattering of the IFN states, leading to the nearly constant 
𝑑2 ≈ 0.07 fraction, larger clustering of nanocracks (higher 𝑑3 fractions) 
and correspondingly lower 𝑑1 fractions.

The dashed line shows the boundary of the cropped 𝑑𝑐
𝑘

fractions 
degree space shown previously in Fig. 6.

3.3. Effect of stress concentrators in triple junctions of grain boundaries

Stress concentrators of inclusions are another significant factor com-
7

monly referred to in fracture mechanics. Such concentrators serve as 
1 2 0

sites for early crack nucleation dramatically decreasing materials’ per-

sistence to fracture. In our discrete model, it is assumed that the pres-

ence of inclusions in the neighbours of a ceramic GB interacts with it 
throughout their common TJs. Clustering of rGO inclusions not only 
creates local spatial inhomogeneity but also greatly increases the value 
of the local GB index 𝐵𝐿 (Eq. (5)), provoking clustering of nanocracks 
in the GB surroundings. In their turn, cracks also create local stress 
concentrators in the neighbouring GBs (see Fig. 3), and during the 
cracking process a value of the corresponding index 𝐶𝐿 growth sig-

nificantly (Eq. (6)). Fig. 8 demonstrate 𝐵𝐿 (Fig. 8a) and 𝐶𝐿 (Fig. 8b) 
GB indices in the random case of spatial distribution of inclusions for 
two moderate values of 𝑝 = 0.1 and 𝑝 = 0.2. Despite the fewer number 
of GBs possessing large 𝐶𝐿 indices, compared to the 𝐵𝐿 distribution, a 
substantial amount of GBs with very high values of the 𝐶𝐿 index are 
clearly seen.

If the effect of the stress concentrators related to the crack index 𝐶𝐿

significantly overcomes the effect of the inclusion index 𝐵𝐿, then the 

fracture process becomes governed solely by the IFN development and 
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Fig. 6. 𝑑𝑐
𝑘

fractions degree space at the random spatial distribution of rGO inclusions. Each dotted line and colour represents changes in the IFN topology with an 
increase in the fraction of fractured GBs 𝑓 = [0.05,0.4] at a given initial fraction of rGO inclusions 𝑝 = [0.1,0.4].

Fig. 7. 𝑑𝑐
𝑘

fractions degree space at the random spatial distribution of rGO inclusions in the absence of their agglomerations. Each dotted line and colour represents 
changes in the IFN topology with an increase in the fraction of fractured GBs 𝑓 = [0.05,0.4] at a given initial fraction of rGO inclusions 𝑝 = [0.1,0.4].
8
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Fig. 8. (a) 𝐵𝐿 and (b) 𝐶𝐿 GB index distributions at the random distribution and two moderate values of inclusions 𝑝 = 0.1 (purple) and 𝑝 = 0.2 (blue). Large values 
of the 𝐵𝐿 index to the right of the dotted line are associated with the presence of rGO agglomerations.

Fig. 9. (a) 𝑑𝑐
𝑘

fractions degree space and (b) evolution of the topological characteristics 𝛽𝑘 and 𝐼𝑐 of the same IFN with 𝑝 = 0.2 at the random spatial distribution of 
rGO inclusions and twice lower elastic stress concentrators related to nanocracks 𝐶𝑐 = 𝐶𝑟 (see Eq. (9)). Here 𝛽0 represents the number of separate components in the 
IFN, while 𝛽3 values are associated with the number of volumetric fragments. Negative values of 𝐼𝑐 < 0 indicate high IFN connectivity.
inclusions can just slightly mediate it, as it was revealed in the previous 
simulation results (Figs. 6 and 7).

To date, a few works demonstrate the local energy value related 
to graphene inclusion [4], but still, there are no estimations for local 
elastic energies created by the presence of rGO inclusions and their ag-

glomerations in the neighbouring GBs. Moreover, the thickness of rGO 
inclusions can vary widely [63], changing the ratio 𝐶𝑐∕𝐶𝑟 of the stress 
concentrators related to inclusions and cracks (see Eq. (9)). It was ini-

tially taken as 𝐶𝑐∕𝐶𝑟 = 2, but in the experiment, this ratio depends on 
numerous factors, including the particular dimensions of inclusions and 
nanocracks. The simulations below (Fig. 9) demonstrate the effect of 
decreasing twice the power of the stress concentrators related to nanoc-

racks by taking the ratio 𝐶𝑐∕𝐶𝑟 = 1 in Eq. (9). The dashed line shows the 
boundary of the cropped ternary TJ space shown previously in Fig. 6.

Opposite to the previous case of the elimination of the rGO agglom-

erations effect, the 𝐶𝑐∕𝐶𝑟 ratio affects the IFN topologies entirely, twice 
widening the scatter of the achievable 𝑑1 values. An average value of 
𝑑2 is also twice larger than it was in the cases considered previously. 
9

At large fractions of cracked GBs, 𝑓 ≈ 0.3 − 0.4, the TJ degree states 
are accumulating around the point {0.3, 0.15, 0.55}. Fig. 9b shows the 
behaviour qualitatively different from Fig. 5b. The IFN here demon-

strates about a hundred separate components 𝛽0, that suggest multiple 
independent origins of the IFN growth, maintaining the network con-

nectivity relatively low. The number of loops 𝛽1 grows gradually. All 
these factors signify the importance of the ratio of local elastic energies 
between the different sources of stress concentrators.

The following Subsection 3.4 discusses the significance of spatial 
rGO rearrangements for the IFN topology.

3.4. Effect of spatial arrangement of rGO inclusions

This subsection addresses the most significant question of how the 
various local patterns of the primal structure of rGO inclusions and the 
corresponding changes in the rGO network characteristics may cause 
different IFN topologies. In other words, one shall study how changes 
in the primal spatial arrangement of rGO inclusions can modify the ulti-

mate cracking behaviour of the considered Al2O3 composites making it 

manageable. Let us use two reference rGO configurations corresponding 
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Fig. 10. Inclusions degree distributions 𝑑𝑟
𝑘

at the two considered reference configurations of inclusions: (a) maximum configuration entropy (S-max), and (b) 
minimum configuration entropy (S-min).
to the minimum configuration entropy (S-min) and the maximum con-

figuration entropy (S-max) cases discussed in Section 2.5. Both these 
configurations are qualitatively different from the random case and 
each other, but no one of them is a quasi-regular structure and all their 
differences are only in the local rGO patterning.

Let us first study the initial case with the set of parameters described 
in Section 2, including the low agglomeration energy Γ𝑎 = 0.4 J/m2

and the inclusion to crack stress concentrators ratio 𝐶𝑐∕𝐶𝑟 = 2. Fig. 10

shows the changes of the 𝑑𝑟
𝑘

inclusion degree fractions with 𝑝 for the 
considered S-max (Fig. 10a) and S-min (Fig. 10b) cases. These figures 
should be compared with the similar Fig. 4a corresponding to the ran-

dom case. In the S-max case, 𝐷2 types of TJs give the corresponding 
degree fraction 𝑑𝑟2 > 0.2 already at 𝑝 ≈ 0.1 and after 𝑝 = 0.2 it roughly 
maintained almost a constant value of 𝑑𝑟2 ≈ 0.3. The fraction of 𝐷3 type 
junctions grows almost linearly starting at 𝑝 ≈ 0.05 in this case achiev-

ing 𝑑𝑟3 ≈ 0.3 already at 𝑝 = 0.4. For comparison, the same value of 𝐷3
TJ fraction is achieved at 𝑝 ≈ 0.65 in the random case and 𝑝 ≈ 0.8 in the 
S-min case. The S-min case naturally maximises the homogeneity of the 
TJ system: before 𝑝 ≈ 0.4 it generates mostly 𝐷1 junctions, after that 
maximising 𝐷2, and finally, after 𝑝 ≈ 0.8, it grows 𝐷3 fraction which 
maintained almost zero before 𝑝 ≈ 0.6.

Fig. 11a shows differences in the topology of the rGO network in 
all the three considered reference configurations. In addition, Fig. 11b 
demonstrate significant differences in the fractions of agglomerations 𝑝𝑎
as the function of inclusion fraction 𝑝. The S-max case possessed a con-

siderable fraction of agglomerations even at a relatively small fraction 
of inclusions demonstrating linear growth starting from 5% of inclu-

sions. In the opposite S-min case, agglomerations are almost absent 
before the fractions of inclusions 𝑝 ≈ 0.32. Fig. 12 provides a more de-

tailed picture of the local agglomeration of inclusions expressed as 𝐵𝐿

index distribution for the considered S-max and S-min reference con-

figurations and two moderate values of 𝑝 = 0.1 and 𝑝 = 0.2. The most 
interesting feature here is the bimodal distributions of the 𝐵𝐿 index at 
the S-max configuration of inclusions, leading to the large fractions of 
agglomerations and rGO-related stress concentrators. This figure is sim-

ilar to Fig. 8a for the random case, where the distribution is apparently 
unimodal.

IFN development in the S-max and S-min references configurations 
at the initial fraction of inclusions 𝑝 = 0.2 is shown in Fig. 13 and 
Fig. 14. In comparison with the analogous Fig. 5 it shows much larger 
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fractions of 𝑑𝑐1 and 𝑑𝑐2 TJ 𝑑-types with 𝛽0 ≈ 8 − 10, suggesting a forest-
like structure development instead of a single tree-like component ob-

served in the random case.

In the S-max and S-min cases, IFN develops as the simultaneous 
growth of several components. The characteristics of the inverse con-

nectivity ln(𝛽0∕𝛽2) show that the maximal connectivity in the fracture 
network at 𝑓 = 0.4 is achieved in the random case, while minimal at 
the S-min case. At the same time, the S-max case possesses the highest 
connectivity increase rate. It is interesting to note that in the S-max (at 
6% fraction of cracks) and S-min (at 4% fraction of cracks) cases of the 
rGO spatial distribution the value of the inverse connectivity of the IFN 
cross zero value, that can be interpreted as a kind of topological phase 
transition [44].

Fig. 15 shows the ternary representation of the IFN topology at a few 
different fractions 𝑝 = {0.1, 0.2, 0.3, 0.4} of rGO inclusions in the consid-

ered S-max and S-min cases of their spatial distribution. For clarity, the 
whole degree space is cropped here similarly to Fig. 6. In the S-min case, 
likewise the random case (see Fig. 6), the IFN topology at large fractions 
of cracked GBs 𝑓 ≈ 0.4 remains almost independent on the rGO frac-

tion and spatial distribution of inclusions moves towards the TJ fraction 
degree state 𝑑𝑐 = {0.1, 0.05, 0.85}. The S-min case is also clearly char-

acterised by a nearly constant degree fraction 𝑑𝑐2 ∈ [0.05, 0.1]. At the 
S-max spatial distribution of inclusions, the fraction degree state moves 
towards another point 𝑑𝑐 = {0.175, 0.1, 0.725} with a twice higher frac-

tion of 𝐷2 junctions.

Analysis reveals that at a high value of the stress concentrators 
𝐶𝑐 ≫ 𝐶𝑟 related to nanocracks it is hardly possible to increase signif-

icantly 𝑑𝑐1 or 𝑑𝑐2 fractions through the changes in spatial arrangement of 
rGO inclusions. The effect of the spatial rearrangement of rGO becomes 
considerable only for the small fraction of cracked GBs 𝑓 ∼ 0.05 − 0.1.

As it has been shown for the random spatial distribution of inclu-

sions, the decrease in the CSC to ISC ratio provides the most efficient 
tool of management IFN topology. Fig. 16 shows the distribution of the 
number of GBs possessing the specific values of 𝐶𝐿 index in the IFN. In 
the both considered S-max and S-min cases high peaks are seen in the 
area of low 𝐶𝐿 values contrasting with the random case distributions 
shown in Fig. 8b.

In Fig. 17 shown TJ degree spaces of the IFN corresponding to the 
S-max and S-min rGO spatial distributions possessed twice lower CSC to 
ISC ratio 𝐶𝑐∕𝐶𝑟 = 1. The dashed line shows the boundary of the cropped 
ternary TJ spaces shown previously in Fig. 6 and Fig. 15. In this case, 

as initial stages of the IFN development with 𝑓 ≈ 0.05 − 0.1, as the late 
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Fig. 11. (a) Ternary TJ degree space of inclusions, and (b) agglomeration fractions 𝑝𝑎 as the functions of inclusion fraction 𝑝 in all the three considered reference 
configurations.

Fig. 12. 𝐵𝐿 index distributions for the S-max and S-min considered reference configurations at two moderate fractions of inclusions 𝑝 = 0.1 (purple) and 𝑝 = 0.2
(blue). Large values of the index to the right of the dotted line are associated with the presence of rGO agglomerations.
stages with 𝑓 ≈ 0.3 − 0.4 can be effectively managed by changes in the 
rGO fraction 𝑝 and their local patterning.

It looks especially promising that in the S-max case at 𝑝 ≈ 0.2 the 
state 𝑑𝑟𝑐 = {0.3, 0.2, 0.5} can be achieved at 𝑓 = 0.4. The IFN contains 
nearly 3 times larger 𝑑𝑐1 and 𝑑𝑐2 fractions compared to the random case 
at the ratio 𝐶𝑐∕𝐶𝑟 = 2 (providing 𝑑𝑐 = {0.1, 0.05, 0.85}) that indicates 
the maintaining of the forest-like IFN structure with multiple indepen-

dently growing components even at large fractions of 𝑓 .

Similar effects can be explicitly visible in the 2D case of structure 
evolution corresponding to a thin film cracking process. While it is not 
similar to the considered 3D case, the 2D fracture process provides 
visually comprehensible pictures of the IFN development process and 
clearly demonstrates the effect of the CSC to ISC ratio. All the simu-

lations presented in Appendix A have been performed with the same 
kinematic fracture model which was used in the 3D case. The PCC has 
been replaced with the 2D Voronoi tessellation of a plane containing 
5,000 polytopes corresponding to Al2O3 ceramic grains. In the 2D case, 
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edges correspond to GBs and nodes to TJs.
4. Discussion and conclusions

Most of the studies in the design of ceramic polycrystalline compos-

ites, including nanocomposites, still operate only with mass fractions 
of different types of inclusions distributed randomly or quasi-randomly 
in the matrix. This approach cannot provide the desired flexibility in 
controlling the mechanical and physical characteristics of the compos-

ites. Special spatial ordering of inclusions should extend significantly 
the range of achievable mechanical properties, but the specific require-

ments for such ordering as well as its effect on the development of 
fracture network remains unclear. Several recent studies highlight the 
primal importance of the spatial distribution of rGO plates [3,64,65]

and their geometry [66]. Additive and powder-based manufacturing 
allow high flexibility in tailoring the internal architecture of the rGO 
inclusion network [20,67]. Although the manufacturing of prescribed 
highly-ordered inclusions’ networks [1] incorporated into ceramic ma-

trix still looks unrealistic, the creation of specific local ordering of inclu-

sions is a much more feasible task. For instance, changing the geometry 

and length distribution of inclusions in rGO powder is one of the options 
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Fig. 13. Evolution of the TJ degree fractions 𝑑𝑐
𝑘

in the IFN of nanocracks developed at the initial fraction of inclusions 𝑝 = 0.2 at (a) S-max and (b) S-min configurations 
of inclusions.

Fig. 14. Evolution of the topological characteristics 𝛽𝑘 and 𝐼𝑐 for the (a) S-max and (b) S-min distributions of rGO inclusions with fraction 𝑝 = 0.2. Here 𝛽0 represents 
the number of separate components in the IFN, while 𝛽3 values are associated with the number of volumetric fragments. Negative values of 𝐼𝑐 < 0 indicate high IFN 
connectivity.
for easy practical implementation of such local ordering. As it has been 
stated in [66]: “graphene with low thickness and large lateral size was 
more beneficial to improve mechanical properties of ceramic compos-

ites”. The possible drawback of such ordering is the nonlinear growth in 
the average number of agglomerations of inclusions and the associated 
growth of local stress concentrators. Studied ceramic nanocomposites, 
like Al2O3 based nanoceramics, with reduced graphene oxide (rGO) 
inclusions combine the advantages of a hard ceramic matrix and soft 
graphene inclusions serving as an excellent electrical conductor and 
providing several toughening mechanisms, such as bridging, crack de-

flection and branching [4,21]. The main barrier to advances in this 
design area is the restrictions of continuous approach in characteris-

ing the primal rGO inclusion network and the induced fracture network 
(IFN) topology. It makes “trial and error” the leading approach, which is 
not economic and practical for developing a new generation of ceramic-

graphene nanocomposites with properties dependent on the graphene 
network configuration.

A new state-of-the-art fully discrete methodology developed in this 
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study naturally overcomes such difficulties allowing for prediction of 
the topology of the nanocrack network emerging in the composite at 
three principally different reference configurations of rGO inclusions: 
random spatial distribution, and distributions characterised by maxi-

mal and minimal diversity in local rGO-rGO junctions. A topologically 
realistic model of the ceramic-graphene nanocomposite based on the 
3-dimension Voronoi tessellation of space allowed for investigating the 
effects of rGO agglomerations in grain boundaries alongside the action 
of the rGO-related (ISC) and nanocrack-related (CSC) stress concentra-

tors. The experimental data about the adhesion energies of rGO-rGO, 
rGO-matrix and matrix-matrix grain boundaries in Al2O3 ceramic and 
the calculated spatial arrangement of ISC and CSC were used to de-

termine the specific set of fractured grain boundaries and characterise 
the topological states of their network. Agglomerations serve as weak 
spots with several times lower adhesion energy compared to all other 
GBs. The developed PCC Processing Design [48] software tools made 
it possible to design numerically special inclusion ordering to control 
the structures of multiple cracking in nanoceramic composites and re-

vealed the most significant factors that affected the induced topology of 

the IFN.
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Fig. 15. 𝑑𝑐
𝑘

TJ fractions degree space at the (a) S-max and (b) S-min spatial distributions of rGO inclusions. Each dotted line and colour represents changes in the 
IFN topology with an increase in the fraction of fractured GBs 𝑓 = [0.05,0.4] at a given initial fraction of rGO inclusions 𝑝 = [0.1,0.4].

Fig. 16. 𝐶𝐿 index distributions for the S-max and S-min reference configurations at two moderate fractions of inclusions 𝑝 = 0.1 (purple) and 𝑝 = 0.2 (blue).
Simulations were performed for a wide range of primal fractions of 
rGO inclusion – from 1% to a few mass per cent of rGO demonstrating 
the evolution of the IFN topology up to the fractions of nanocracks (as-

sociated with damage value) equal to 40% of fractured GBs. It has been 
demonstrated that an increase in the fraction of rGO inclusions has a 
significant effect on the IFN at the early stages of the fracture process 
(below ≈1 mass per cent) and, what is more surprising, the IFN struc-

ture can be topologically close at twice larger rGO fraction, while its 
moderate increase can abruptly cause very different topological states. 
At any stage of the IFN development, the increase of the rGO fraction 
above 2% mass per cent becomes low effective for the modification of 
IFN topology and at the same time should affect negatively the strength 
of the composite. On the contrary, the local ordering of rGO inclusions 
can significantly affect the IFN development at any stage of its devel-

opment but its effect is massively determined by the ratio of the local 
stress concentrators related to inclusions (ISC) and nanocracks (CSC). 
This ratio appears to be the most significant factor affecting the IFN 
topology: the nanocrack network develops as a single highly connected 
component at high CSC/ISC ratios much greater than 1 and as a “forest” 
containing several independently developing components at its low ra-
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tios tend to 1. Hence, only the composites with low CSC/ISC ratio allow 
to use effectively rGO spatial redistribution to govern the whole IFN de-

velopment, so that the local ordering of rGO inclusions can provide an 
effective control tool for tailoring IFN topology. In practice, this ratio 
should depend strongly on the grain size distribution of the nanocom-

posite determining the average size and the related elastic energy of 
nanocracks, and the rGO thickness distribution which can be practi-

cally varied in a wide range – from one graphene layer to the flakes 
about micrometre in size.

The agglomerations of inclusions play an equivocal role in the IFN 
development: they increase the number of weak points for fracture nu-

cleation, negatively affecting the composite’s strength, but, at the same 
time, increase spatial homogeneity of the IFN and so the amount of total 
dissipated energy during the fracture process. The agglomeration effect 
is quite notable even in the random case of rGO spatial distribution. The 
scattering of the achievable topological states of the IFN significantly 
decreases with the increasing of rGO inclusions’ fraction and decreases 
the number of rGO agglomerations. In that sense, a reasonable increase 
in the amount of agglomeration can be a positive factor.

At any performed modifications of the initial rGO inclusions topol-

ogy it was not possible to achieve the nanocrack network with the frac-
tion of the 𝑑2 type junctions corresponding to the elongated chains of 
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Fig. 17. 𝑑𝑐
𝑘

TJ fractions degree space at the (a) S-max and (b) S-min spatial distribution of rGO inclusions at low value of stress concentrators 𝐶𝑐 = 𝐶𝑟 related to 
nanocracks. Each dotted line and colour represents changes in the IFN topology with an increase in the fraction of fractured GBs 𝑓 = [0.05,0.4] at a given initial 
fraction of rGO inclusions 𝑝 = [0.1,0.4].
nanocracks exceeded 30%. In most simulation cases, highly fragmented 
tree-like structures with a high value of 𝑑1 type junctions (“leaves”) are 
observed at low fractions of fractured GBs moving towards a cell struc-

ture possessing a high value of 𝑑3 type junctions at high fraction of 
nanocracks.

As a rule of thumb, the rGO plates with the thickness of a few 
graphene layers, whose elastic fields are comparable to the correspond-

ing fields of the surrounding nanocracks and a reasonable amount of 
rGO agglomerations for increasing large-scale stress homogeneity can 
be generally suggested. More accurate inclusion network design can be 
effectively computed at each particular practical case using the devel-

oped methodology and software tools [48,50].

Several other valuable aspects can be considered in further works: 
the effect of the size distribution of rGO inclusions, the electrical con-

ductivity of their network, more types of grain boundaries, the inclusion 
of 𝛼 and 𝛾 types of ceramic matrix boundaries and different types of 
graphene-like inclusions. Novel experimental methodologies like X-ray 
tomography [68] and 3D EBSD analysis open exciting perspectives for 
the characterisation of rGO spatial distributions and the development 
of fracture networks. Recent developments in additive manufacturing 
[20] make possible management of defect microstructures on the mi-

croscale level. On the other side, the common case of the macroscopic 
crack growth accompanied by the pre-fracture events in their process-

ing zones and the effect of the complex stress state can be considered 
straightforwardly using the developed methodology and programming 
tools. Our ongoing task is to supplement the developed purely kinematic 
model with the explicit consideration of external stresses and macro-

scopic cracks growth providing a more comprehensive picture of the 
composite’s fracture development both on the microscopic and macro-

scopic levels. All the outcomes of the present paper remain correct in 
such a multi-scale consideration to describe the local development of 
the IFN topology in the vicinity of macrocracks and suggest an optimal 
ratio between CSC and ISC.
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Appendix A. 2D simulations of the IFN development

Figures below show several 2D sketches representing IFN develop-

ment in the same 2D cut of a PCC in two reference cases (Subsection 
2.5) corresponding to the random generation of inclusions and their 
arrangement corresponding to the maximum configuration entropy (S-

max) at two different CSC to ISC ratios.

In the random case of the rGO primal distribution and the high ratio 
CSC/ISC = 2 (Fig. A.18).

In the random case of rGO primal distribution and the low ratio 
CSC/ISC = 1 (Fig. A.19).

In the S-max case of rGO primal distribution and the high ratio 
CSC/ISC = 2 (Fig. A.20).

In the S-max case of rGO primal distribution and the low ratio 
CSC/ISC = 1 (Fig. A.21).

Typical rGO and IFN local patterns at S-max reference configuration 

high and low CSC to ISC ratio are shown in Fig. A.22.

https://rscf.ru/project/18-19-00255/
http://materia.team
http://materia.team
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Fig. A.18. 2D visualisation of microstructures of the random distribution of rGO inclusions (black) and IFN of nanocracks (blue) with their typical patterns at 𝑝 = 0.1, 
high ratio CSC/ISC = 2 and (a) 𝑓 = 0.02, (b) 𝑓 = 0.1, (b) 𝑓 = 0.2, (b) 𝑓 = 0.3, (b) 𝑓 = 0.4, (b) 𝑓 = 0.5.

Fig. A.19. 2D visualisation of microstructures of the random distribution of rGO inclusions (black) and IFN of nanocracks (blue) with their typical patterns at 𝑝 = 0.2, 
low ratio CSC/ISC = 1 and (a) 𝑓 = 0.02, (b) 𝑓 = 0.1, (b) 𝑓 = 0.2, (b) 𝑓 = 0.3, (b) 𝑓 = 0.4, (b) 𝑓 = 0.5.
15
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Fig. A.20. 2D visualisation of microstructures of the S-max distribution of rGO inclusions (black) and IFN of nanocracks (blue) with their typical patterns at 𝑝 = 0.1, 
high ratio CSC/ISC = 2 and (a) 𝑓 = 0.02, (b) 𝑓 = 0.1, (b) 𝑓 = 0.2, (b) 𝑓 = 0.3, (b) 𝑓 = 0.4, (b) 𝑓 = 0.5.

Fig. A.21. 2D visualisation of microstructures of the S-max distribution of rGO inclusions (black) and IFN of nanocracks (blue) with their typical patterns at 𝑝 = 0.2, 
low ratio CSC/ISC = 1 and (a) 𝑓 = 0.02, (b) 𝑓 = 0.1, (b) 𝑓 = 0.2, (b) 𝑓 = 0.3, (b) 𝑓 = 0.4, (b) 𝑓 = 0.5.
16
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Fig. A.22. Typical rGO inclusions (black) and nanocracks (blue) local patterns at S-max reference configuration at (a) high and (b) low CSC to ISC ratio.
More results of the corresponding 2D simulation, including the ran-

dom, S-min, S-max reference configurations of rGO inclusions, and gif-

animations of the 2-dimension IFN development can be found on the 
web host [69].

References

[1] X. Zhang, N. Zhao, C. He, The superior mechanical and physical properties of 
nanocarbon reinforced bulk composites achieved by architecture design - a re-

view, Prog. Mater. Sci. 113 (2020) 100672, https://doi .org /10 .1016 /j .pmatsci .
2020 .100672.

[2] Y. Wu, F. Ma, J. Qu, T. Qi, Enhanced mechanical and piezoelectric properties of 
BCZT-CuY/rGO-based nanogenerator for tiny energy harvesting, Mater. Lett. 231 
(2018) 20–23, https://doi .org /10 .1016 /j .matlet .2018 .07 .102.

[3] E. Borodin, A.P. Jivkov, A.G. Sheinerman, M.Y. Gutkin, Optimisation of rGO-

enriched nanoceramics by combinatorial analysis, Mater. Des. 212 (2021) 110191, 
https://doi .org /10 .1016 /j .matdes .2021 .110191.

[4] A.G. Sheinerman, N.F. Morozov, M.Y. Gutkin, Effect of grain boundary sliding 
on fracture toughness of ceramic/graphene composites, Mech. Mater. 137 (2019) 
103126, https://doi .org /10 .1016 /j .mechmat .2019 .103126.

[5] O.Y. Kurapova, O.V. Glumov, I.V. Lomakin, S.N. Golubev, M.M. Pivovarov, J.V. 
Krivolapova, V.G. Konakov, Microstructure, conductivity and mechanical prop-

erties of calcia stabilized zirconia ceramics obtained from nanosized precursor 
and reduced graphene oxide doped precursor powders, Ceram. Int. 44 (2018) 
15464–15471, https://doi .org /10 .1016 /j .ceramint .2018 .05 .202.

[6] O.Y. Kurapova, A.G. Glukharev, O.V. Glumov, M.Y. Kurapov, E.V. Boltynjuk, V.G. 
Konakov, Structure and electrical properties of YSZ-rGO composites and YSZ ce-

ramics, obtained from composite powder, Electrochim. Acta 320 (2019) 134573, 
https://doi .org /10 .1016 /j .electacta .2019 .134573.

[7] L. Hu, W. Wang, Q. He, A. Wang, C. Liu, T. Tian, H. Wang, Z. Fu, Preparation and 
characterization of reduced graphene oxide-reinforced boron carbide ceramics by 
self-assembly polymerization and spark plasma sintering, J. Eur. Ceram. Soc. 40 
(2020) 612–621, https://doi .org /10 .1016 /j .jeurceramsoc .2019 .10 .036.

[8] C. Song, Y. Liu, F. Ye, J. Wang, L. Cheng, Microstructure and electromagnetic wave 
absorption property of reduced graphene oxide-SiCnw/SiBCN composite ceram-

ics, Ceram. Int. 46 (2020) 7719–7732, https://doi .org /10 .1016 /j .ceramint .2019 .11 .
275.

[9] R. Zhou, L. Liao, Z. Chen, L. Zhong, X. Xu, Y. Han, Y. Zhong, Y. Zheng, R. 
Yao, Fabrication of monolithic rGO/SiC(O) nanocomposite ceramics via precursor 
(polycarbosilane-vinyltriethoxysilane-graphene oxide) route, Ceram. Int. 44 (2018) 
14929–14934, https://doi .org /10 .1016 /j .ceramint .2018 .05 .084.

[10] L. Zhou, J. Qiu, X. Wang, H. Wang, Z. Wang, D. Fang, Z. Li, Mechanical and dielec-

tric properties of reduced graphene oxide nanosheets/alumina composite ceramics, 
Ceram. Int. 46 (2020) 1–7, https://doi .org /10 .1016 /j .ceramint .2020 .04 .293.

[11] M. Li, W. Wang, Q. He, A. Wang, L. Hu, Z. Fu, Reduced-graphene-oxide-reinforced 
boron carbide ceramics fabricated by spark plasma sintering from powder mixtures 
obtained by heterogeneous co-precipitation, Ceram. Int. 45 (2019) 16496–16503, 
https://doi .org /10 .1016 /j .ceramint .2019 .05 .183.

[12] A. Gallardo-López, I. Márquez-Abril, A. Morales-Rodríguez, A. Muñoz, R. Poy-

ato, Dense graphene nanoplatelet/yttria tetragonal zirconia composites: processing, 
hardness and electrical conductivity, Ceram. Int. 43 (2017) 11743–11752, https://

doi .org /10 .1016 /j .ceramint .2017 .06 .007.

[13] N.W. Solís, P. Peretyagin, R. Torrecillas, A. Fernández, J.L. Menéndez, C. Mallada, 
L.A. Díaz, J.S. Moya, Electrically conductor black zirconia ceramic by SPS us-

ing graphene oxide, J. Electroceram. 38 (2017) 119–124, https://doi .org /10 .1007 /
s10832 -017 -0076 -z.

[14] Y. Cheng, Y. Liu, Y. An, N. Hu, High thermal-conductivity rGO/ZrB2-SiC ceram-
17

ics consolidated from ZrB2-SiC particles decorated GO hybrid foam with enhanced 
thermal shock resistance, J. Eur. Ceram. Soc. 40 (2020) 2760–2767, https://

doi .org /10 .1016 /j .jeurceramsoc .2020 .03 .029.

[15] Y. Huang, D. Jiang, X. Zhang, Z. Liao, Z. Huang, Enhancing toughness and strength 
of SiC ceramics with reduced graphene oxide by HP sintering, J. Eur. Ceram. Soc. 
38 (2018) 4329–4337, https://doi .org /10 .1016 /j .jeurceramsoc .2018 .05 .033.

[16] P. Wu, H. Lv, T. Peng, D. He, S. Mu, Nano conductive ceramic wedged graphene 
composites as highly efficient metal supports for oxygen reduction, Sci. Rep. 4 
(2014), https://doi .org /10 .1038 /srep03968.

[17] C.M. Hussain, S. Thomas, Handbook of Polymer and Ceramic Nanotechnology, 
Springer, 2021.
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