856 research outputs found

    Parity Fluctuations Between Coulomb Blockaded Superconducting Islands

    Full text link
    We find that if two superconducting islands of different number parity are linked by a tunnel junction the unpaired electron in the odd island has a tendency to tunnel into the even island. This process leads to fluctuations in time of the number parity of each island, giving rise to a random telegraph noise spectrum with a characteristic frequency that has an unusual temperature dependence. This new phenomenon should be observable in a Cooper-pair pump and similar single-electron tunneling devices.Comment: 4 pages, self-unpacking uuencoded gz-compressed postscript file with 3 figures included; also available at http://www.lassp.cornell.edu/janko/publications.htm

    Pairing Fluctuation Theory of Superconducting Properties in Underdoped to Overdoped Cuprates

    Full text link
    We propose a theoretical description of the superconducting state of under- to overdoped cuprates, based on the short coherence length of these materials and the associated strong pairing fluctuations. The calculated TcT_c and the zero temperature excitation gap Δ(0)\Delta(0), as a function of hole concentration xx, are in semi-quantitative agreement with experiment. Although the ratio Tc/Δ(0)T_c/\Delta(0) has a strong xx dependence, different from the universal BCS value, and Δ(T)\Delta(T) deviates significantly from the BCS prediction, we obtain, quite remarkably, quasi-universal behavior, for the normalized superfluid density ρs(T)/ρs(0)\rho_s(T)/\rho_s(0) and the Josephson critical current Ic(T)/Ic(0)I_c(T)/I_c(0), as a function of T/TcT/T_c. While experiments on ρs(T)\rho_s(T) are consistent with these results, future measurements on Ic(T)I_c(T) are needed to test this prediction.Comment: 4 pages, 3 figures, REVTeX, submitted to Phys. Rev. Let

    Pseudogap effects induced by resonant pair scattering

    Full text link
    We demonstrate how resonant pair scattering of correlated electrons above T_c can give rise to pseudogap behavior. This resonance in the scattering T-matrix appears for superconducting interactions of intermediate strength, within the framework of a simple fermionic model. It is associated with a splitting of the single peak in the spectral function into a pair of peaks separated by an energy gap. Our physical picture is contrasted with that derived from other T-matrix schemes, with superconducting fluctuation effects, and with preformed pair (boson-fermion) models. Implications for photoemission and tunneling experiments in the cuprates are discussed.Comment: REVTeX3.0; 4 pages, 4 EPS figures (included

    Dispersion of the neutron resonance in cuprate superconductors

    Full text link
    We argue that recently measured downward dispersion of the neutron resonance peak in cuprate superconductors is naturally explained if the resonance is viewed as a spin-1 collective mode in a d-wave superconductor. The reduction of the resonant frequency away from the antiferromagnetic wave vector is a direct consequence of the momentum dependence of the d-wave superconducting gap. When the magnetic correlation length becomes large, the dispersion should become magnon-like, i.e., curve upwards from (pi,pi).Comment: 4 pages, 3 inline PostScript figures. Added reference

    VHMPID: a new detector for the ALICE experiment at LHC

    Full text link
    This article presents the basic idea of VHMPID, an upgrade detector for the ALICE experiment at LHC, CERN. The main goal of this detector is to extend the particle identification capabilities of ALICE to give more insight into the evolution of the hot and dense matter created in Pb-Pb collisions. Starting from the physics motivations and working principles the challenges and current status of development is detailed.Comment: 4 pages, 6 figures. To be published in EPJ Web of Conference

    Incoherent Pair Tunneling as a Probe of the Cuprate Pseudogap

    Full text link
    We argue that incoherent pair tunneling in a cuprate superconductor junction with an optimally doped superconducting and an underdoped normal lead can be used to detect the presence of pairing correlations in the pseudogap phase of the underdoped lead. We estimate that the junction characteristics most suitable for studying the pair tunneling current are close to recently manufactured cuprate tunneling devices.Comment: ReVTeX 3.1; 4 pages, 2 EPS figures (included

    Theory of Scanning Tunneling Spectroscopy of Magnetic-Field-Induced Discrete Nodal States in a D-Wave Superconductor

    Full text link
    In the presence of an external magnetic field, the low lying elementary excitations of a d-wave superconductor have quantized energy and their momenta are locked near the node direction. It is argued that these discrete states can most likely be detected by a local probe, such as a scanning tunneling microscope. The low temperature local tunneling conductance on the Wigner-Seitz cell boundaries of the vortex lattice is predicted to show peaks spaced as ±n,n=0,1,2,...\pm \sqrt{n}, n ={0,1,2, ...}. The n=0n=0 peak is anomalous, and it is present only if the superconducting order parameter changes sign at certain points on the Fermi surface. Away from the cell boundary, where the superfluid velocity is nonzero, each peak splits, in general, into four peaks, corresponding to the number of nodes in the order parameter.Comment: RevTeX 3.0, 4 pages, 3 figures (included

    Superconducting transitions from the pseudogap state: d-wave symmetry, lattice, and low-dimensional effects

    Full text link
    We investigate the behavior of the superconducting transition temperature within a previously developed BCS-Bose Einstein crossover picture. This picture, based on a decoupling scheme of Kadanoff and Martin, further extended by Patton, can be used to derive a simple form for the superconducting transition temperature in the presence of a pseudogap. We extend previous work which addressed the case of s-wave pairing in jellium, to explore the solutions for T_c as a function of variable coupling in more physically relevant situations. We thereby ascertain the effects of reduced dimensionality, periodic lattices and a d-wave pairing interaction. Implications for the cuprate superconductors are discussed.Comment: REVTeX, 11 pages, 6 EPS figures included, Replace with published versio

    Multiplicity dependence of jet-like two-particle correlations in p-Pb collisions at sNN\sqrt{s_{NN}} = 5.02 TeV

    Full text link
    Two-particle angular correlations between unidentified charged trigger and associated particles are measured by the ALICE detector in p-Pb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum range 0.7 <pT,assoc<pT,trig< < p_{\rm{T}, assoc} < p_{\rm{T}, trig} < 5.0 GeV/cc is examined, to include correlations induced by jets originating from low momen\-tum-transfer scatterings (minijets). The correlations expressed as associated yield per trigger particle are obtained in the pseudorapidity range η<0.9|\eta|<0.9. The near-side long-range pseudorapidity correlations observed in high-multiplicity p-Pb collisions are subtracted from both near-side short-range and away-side correlations in order to remove the non-jet-like components. The yields in the jet-like peaks are found to be invariant with event multiplicity with the exception of events with low multiplicity. This invariance is consistent with the particles being produced via the incoherent fragmentation of multiple parton--parton scatterings, while the yield related to the previously observed ridge structures is not jet-related. The number of uncorrelated sources of particle production is found to increase linearly with multiplicity, suggesting no saturation of the number of multi-parton interactions even in the highest multiplicity p-Pb collisions. Further, the number scales in the intermediate multiplicity region with the number of binary nucleon-nucleon collisions estimated with a Glauber Monte-Carlo simulation.Comment: 23 pages, 6 captioned figures, 1 table, authors from page 17, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/161

    Charge separation relative to the reaction plane in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}}= 2.76 TeV

    Get PDF
    Measurements of charge dependent azimuthal correlations with the ALICE detector at the LHC are reported for Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV. Two- and three-particle charge-dependent azimuthal correlations in the pseudo-rapidity range η<0.8|\eta| < 0.8 are presented as a function of the collision centrality, particle separation in pseudo-rapidity, and transverse momentum. A clear signal compatible with a charge-dependent separation relative to the reaction plane is observed, which shows little or no collision energy dependence when compared to measurements at RHIC energies. This provides a new insight for understanding the nature of the charge dependent azimuthal correlations observed at RHIC and LHC energies.Comment: 12 pages, 3 captioned figures, authors from page 2 to 6, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/286
    corecore