131 research outputs found

    TEXES Observations of Pure Rotational H_2 Emission from AB Aurigae

    Get PDF
    We present observations of pure rotational molecular hydrogen emission from the Herbig Ae star, AB Aur. Our observations were made using the Texas Echelon Cross Echelle Spectrograph (TEXES) at the NASA Infrared Telescope Facility and the Gemini North Observatory. We searched for H_2 emission in the S(1), S(2), and S(4) lines at high spectral resolution and detected all three. By fitting a simple model for the emission in the three transitions, we derive T = 670 ± 40 K and M = 0.52 ± 0.15 M_⊙ for the emitting gas. On the basis of the 8.5 km s^(-1) FWHM of the S(2) line, assuming the emission comes from the circumstellar disk, and with an inclination estimate of the AB Aur system taken from the literature, we place the location for the emission near 18 AU. Comparison of our derived temperature to a disk structure model suggests that UV and X-ray heating are important in heating the disk atmosphere

    W51 IRS 2: A Massive Jet Emerging from a Molecular Cloud into an H II Region

    Get PDF
    We have mapped [Ne II] (12.8um) and [S IV] (10.5um) emission from W51 IRS 2 with TEXES on Gemini North, and we compare these data to VLA free-free observations and VLT near-infrared images. With 0.5" spatial and 4 km/s spectral resolution we are able to separate the ionized gas into several components: an extended H II region on the front surface of the molecular cloud, several embedded compact H II regions, and a streamer of high velocity gas. We interpret the high velocity streamer as a precessing or fan-like jet, which has emerged from the molecular cloud into an OB star cluster where it is being ionized.Comment: 3 pages, 4 figures, 2 movie

    HD 101088, An Accreting 14 AU Binary in Lower Centaurus Crux With Very Little Circumstellar Dust

    Full text link
    We present high resolution (R=55,000) optical spectra obtained with MIKE on the 6.5 m Magellan Clay Telescope as well as Spitzer MIPS photometry and IRS low resolution (R~60) spectroscopy of the close (14 AU separation) binary, HD 101088, a member of the ~12 Myr old southern region of the Lower Centaurus Crux (LCC) subgroup of the Scorpius-Centaurus OB association. We find that the primary and/or secondary is accreting from a tenuous circumprimary and/or circumsecondary disk despite the apparent lack of a massive circumbinary disk. We estimate a lower limit to the accretion rate of > 1x10^-9 solar masses per year, which our multiple observation epochs show varies over a timescale of months. The upper limit on the 70 micron flux allows us to place an upper limit on the mass of dust grains smaller than several microns present in a circumbinary disk of 0.16 moon masses. We conclude that the classification of disks into either protoplanetary or debris disks based on fractional infrared luminosity alone may be misleading.Comment: 8 pages, 2 figures, ApJ accepte

    The Masses and Evolutionary State of the Stars in the Dwarf Nova SS Cygni

    Get PDF
    The dwarf nova SS Cygni is a close binary star consisting of a K star transferring mass to a white dwarf by way of an accretion disk. We have obtained new spectroscopic observations of SS Cyg with the Hobby-Eberly Telescope (HET). Fits of synthetic spectra for Roche-lobe-filling stars to the absorption-line spectrum of the K star yield the amplitude of the K star's radial velocity curve and the mass ratio: K_{K} = 162.5 +/- 1.0 km/s and q= M_{K} /M_{wd} = 0.685 +/- 0.015. The fits also show that the accretion disk and white dwarf contribute a fraction f = 0.535 +/- 0.075 of the total flux at 5500 angstroms. Taking the weighted average of our results with previously published results obtained using similar techniques, we find = 163.7 +/- 0.7 km/s and = 0.683 +/- 0.012. The orbital light curve of SS Cyg shows an ellipsoidal variation diluted by light from the disk and white dwarf. From an analysis of the ellipsoidal variations we limit the orbital inclination to the range 45 deg. <= i <= 56 deg. The derived masses of the K star and white dwarf are M_{K} = 0.55 +/- 0.13 M_sun and M_{wd} = 0.81 +/- 0.19 M_sun, where the uncertainties are dominated by systematic errors in the orbital inclination. The K star in SS Cyg is 10% to 50% larger than an unevolved star with the same mass and thus does not follow the mass-radius relation for Zero-Age Main-Sequence stars; nor does it follow the ZAMS mass/spectral-type relation. Its mass and spectral type are, however, consistent with models in which the core hydrogen has been significantly depleted

    A survey for near-infrared H2 emission in Herbig Ae/Be stars: emission from the outer disks of HD 97048 and HD 100546

    Get PDF
    We report on a sensitive search for H2 1-0 S(1), 1-0 S(0) and 2-1 S(1) ro-vibrational emission at 2.12, 2.22 and 2.25 micron in a sample of 15 Herbig Ae/Be stars employing CRIRES, the ESO-VLT near-infrared high-resolution spectrograph, at R~90,000. We detect the H2 1-0 S(1) line toward HD 100546 and HD 97048. In the other 13 targets, the line is not detected. The H2 1-0 S(0) and 2-1 S(1) lines are undetected in all sources. This is the first detection of near-IR H2 emission in HD 100546. The H2 1-0 S(1) lines observed in HD 100546 and HD 97048 are observed at a velocity consistent with the rest velocity of both stars, suggesting that they are produced in the circumstellar disk. In HD 97048, the emission is spatially resolved and it is observed to extend at least up to 200 AU. We report an increase of one order of magnitude in the H2 1-0 S(1) line flux with respect to previous measurements taken in 2003 for this star, which suggests line variability. In HD 100546 the emission is tentatively spatially resolved and may extend at least up to 50 AU. Modeling of the H2 1-0 S(1) line profiles and their spatial extent with flat keplerian disks shows that most of the emission is produced at a radius >5 AU. Upper limits to the H2 1-0 S(0)/ 1-0 S(1) and H2 2-1 S(1)/1-0 S(1) line ratios in HD 97048 are consistent with H2 gas at T>2000 K and suggest that the emission observed may be produced by X-ray excitation. The upper limits for the line ratios for HD 100546 are inconclusive. Because the H2 emission is located at large radii, for both sources a thermal emission scenario (i.e., gas heated by collisions with dust) is implausible. We argue that the observation of H2 emission at large radii may be indicative of an extended disk atmosphere at radii >5 AU. This may be explained by a hydrostatic disk in which gas and dust are thermally decoupled or by a disk wind caused by photoevaporation.Comment: Accepted by A&A. 16 pages, 7 figure

    A Search for Mid-Infrared Molecular Hydrogen Emission from Protoplanetary Disks

    Get PDF
    We observed the Herbig Ae/Be stars UX Ori, HD 34282, HD 100453, HD 101412, HD 104237 and HD 142666, and the T Tauri star HD 319139 and searched for H2 0-0 S(2) emission at 12.278 micron and H2 0-0 S(1) emission at 17.035 micron with VISIR, ESO-VLT's high-resolution MIR spectrograph. None of the sources present evidence for H2 emission. Stringent 3sigma upper limits to the integrated line fluxes and the mass of optically thin warm gas in the disks are derived. The disks contain less than a few tenths of Jupiter mass of optically thin H2 gas at 150 K at most, and less than a few Earth masses of optically thin H2 gas at 300 K and higher temperatures. We compare our results to a Chiang and Goldreich (1997, CG97) two-layer disk model. The upper limits to the disk's optically thin warm gas mass are smaller than the amount of warm gas in the interior layer of the disk, but they are much larger than the amount of molecular gas in the surface layer. We present a calculation of the expected thermal H2 emission from optically thick disks, assuming a CG97 disk structure, a gas-to-dust ratio of 100 and Tgas = Tdust. The expected H2 thermal emission fluxes from typical disks around Herbig Ae/Be stars (10^-16 to 10^-17 erg/s/cm2 at 140 pc) are much lower than the detection limits of our observations (5*10^-15 erg/s/cm2). H2 emission levels are very sensitive to departures from the thermal coupling between the molecular gas and dust. Additional sources of heating of gas in the disk's surface layer could have a major impact on the expected H2 disk emission. In the observed sources the molecular gas and dust in the surface layer have not significantly departed from thermal coupling (Tgas/Tdust< 2) and that the gas-to-dust ratio in the surface layer is very likely lower than 1000.Comment: 16 pages, 9 figures, accepted by A&A. v2: typo in footnote ** corrected, v3: corrections of the A&A language editor included, typo in title of Fig. 1. correcte

    Observational diagnostics of gas in protoplanetary disks

    Full text link
    Protoplanetary disks are composed primarily of gas (99% of the mass). Nevertheless, relatively few observational constraints exist for the gas in disks. In this review, I discuss several observational diagnostics in the UV, optical, near-IR, mid-IR, and (sub)-mm wavelengths that have been employed to study the gas in the disks of young stellar objects. I concentrate in diagnostics that probe the inner 20 AU of the disk, the region where planets are expected to form. I discuss the potential and limitations of each gas tracer and present prospects for future research.Comment: Review written for the proceedings of the conference "Origin and Evolution of Planets 2008", Ascona, Switzerland, June 29 - July 4, 2008. Date manuscript: October 2008. 17 Pages, 6 graphics, 134 reference

    Does Culture Impact Preferred Employee attributes in Complaint Handling Encounters?

    Get PDF
    Recently, Gruber et al.’s (2011) Kano study revealed that complaining customers in Saudi Arabia are less difficult to delight than UK customers. The present study investigates whether these differences are caused by different service sector development stages, as suggested in their study, or by cultural differences instead. Data were collected using Kano questionnaires from 151 respondents with complaining experience in Singapore. This country was chosen as it has a highly developed service economy (like the UK) but also a collectivistic culture (like Saudi Arabia). The analysis reveals that Singaporean customers show the same preferences as those in the UK. We consider this as a strong indicator for the suggested impact of the stage of service sector development rather than cultural differences on complaining customers’ preferences of frontline employee attributes. Our results support the findings by Gruber et al. (2011). By doing so, they surprisingly refute previous research which concluded that national culture plays a significant role in shaping customer expectations during complaint handling encounters. Our study especially corroborates the notion of a life cycle of quality attributes that had been found for goods and services and the preferred attributes of frontline employees dealing with customer complaints

    GASPS observations of Herbig Ae/Be stars with PACS/Herschel. The atomic and molecular content of their protoplanetary discs

    Get PDF
    We observed a sample of 20 representative Herbig Ae/Be stars and five A-type debris discs with PACS onboard of Herschel. The observations were done in spectroscopic mode, and cover far-IR lines of [OI], [CII], CO, CH+, H2O and OH. We have a [OI]63 micron detection rate of 100% for the Herbig Ae/Be and 0% for the debris discs. [OI]145 micron is only detected in 25%, CO J=18-17 in 45% (and less for higher J transitions) of the Herbig Ae/Be stars and for [CII] 157 micron, we often found spatially variable background contamination. We show the first detection of water in a Herbig Ae disc, HD 163296, which has a settled disc. Hydroxyl is detected as well in this disc. CH+, first seen in HD 100546, is now detected for the second time in a Herbig Ae star, HD 97048. We report fluxes for each line and use the observations as line diagnostics of the gas properties. Furthermore, we look for correlations between the strength of the emission lines and stellar or disc parameters, such as stellar luminosity, UV and X-ray flux, accretion rate, PAH band strength, and flaring. We find that the stellar UV flux is the dominant excitation mechanism of [OI]63 micron, with the highest line fluxes found in those objects with a large amount of flaring and greatest PAH strength. Neither the amount of accretion nor the X-ray luminosity has an influence on the line strength. We find correlations between the line flux of [OI]63 micron and [OI]145 micron, CO J = 18-17 and [OI]6300 \AA, and between the continuum flux at 63 micron and at 1.3 mm, while we find weak correlations between the line flux of [OI]63 micron and the PAH luminosity, the line flux of CO J = 3-2, the continuum flux at 63 micron, the stellar effective temperature and the Brgamma luminosity. (Abbreviated version)Comment: 20 pages, 29 figures, accepted by Astronomy and Astrophysic

    The TEXES Survey For H2 Emission From Protoplanetary Disks

    Get PDF
    We report the results of a search for pure rotational molecular hydrogen emission from the circumstellar environments of young stellar objects with disks using the Texas Echelon Cross Echelle Spectrograph (TEXES) on the NASA Infrared Telescope Facility and the Gemini North Observatory. We searched for mid-infrared H2 emission in the S(1), S(2), and S(4) transitions. Keck/NIRSPEC observations of the H2 S(9) transition were included for some sources as an additional constraint on the gas temperature. We detected H2 emission from 6 of 29 sources observed: AB Aur, DoAr 21, Elias 29, GSS 30 IRS 1, GV Tau N, and HL Tau. Four of the six targets with detected emission are class I sources that show evidence for surrounding material in an envelope in addition to a circumstellar disk. In these cases, we show that accretion shock heating is a plausible excitation mechanism. The detected emission lines are narrow (~10 km/s), centered at the stellar velocity, and spatially unresolved at scales of 0.4 arcsec, which is consistent with origin from a disk at radii 10-50 AU from the star. In cases where we detect multiple emission lines, we derive temperatures > 500 K from ~1 M_earth of gas. Our upper limits for the non-detections place upper limits on the amount of H2 gas with T > 500 K of less than a few Earth masses. Such warm gas temperatures are significantly higher than the equilibrium dust temperatures at these radii, suggesting that the gas is decoupled from the dust in the regions we are studying and that processes such as UV, X-ray, and accretion heating may be important.Comment: 24 pages, 16 figures, 5 tables, ApJ accepte
    • …
    corecore