371 research outputs found

    O(1/N_f) Corrections to the Thirring Model in 2<d<4

    Full text link
    The Thirring model, that is, a relativistic field theory of fermions with a contact interaction between vector currents, is studied for dimensionalities 2<d<4 using the 1/N_f expansion, where N_f is the number of fermion species. The model is found to have no ultraviolet divergences at leading order provided a regularization respecting current conservation is used. Explicit O(1/N_f) corrections are computed, and the model shown to be renormalizable at this order in the massless limit; renormalizability appears to hold to all orders due to a special case of Weinberg's theorem. This implies there is a universal amplitude for four particle scattering in the asymptotic regime. Comparisons are made with both the Gross-Neveu model and QED.Comment: 22 pages in plain TeX, with 7 figs included using psfig.tex (Minor conceptual changes - algebra unaffected

    Enhancement of the Thermal Conductivity in gapped Quantum Spin Chains

    Full text link
    We study mechanism of magnetic energy transport, motivated by recent measurements of the thermal conductivity in low dimensional quantum magnets. We point out a possible mechanism of enhancement of the thermal conductivity in gapped magnetic system, where the magnetic energy transport plays a crucial role. This mechanism gives an interpretation for the recent experiment of CuGeO_3, where the thermal conductivity depends on the crystal direction.Comment: 4 pages, 2 figure

    Gravitational Couplings of Intrinsic Spin

    Get PDF
    The gravitational couplings of intrinsic spin are briefly reviewed. A consequence of the Dirac equation in the exterior gravitational field of a rotating mass is considered in detail, namely, the difference in the energy of a spin-1/2 particle polarized vertically up and down near the surface of a rotating body is ℏΩsin⁡θ\hbar\Omega\sin\theta. Here θ\theta is the latitude and Ω=2GJ/(c2R3)\Omega = 2GJ/(c^2 R^3), where JJ and RR are, respectively, the angular momentum and radius of the body. It seems that this relativistic quantum gravitational effect could be measurable in the foreseeable future.Comment: LaTeX file, no figures, 16 page

    High frequency ESR investigation on dynamical charge disproportionation and spin gap excitation in NaV_2O_5

    Full text link
    A significant frequency dependence of the ESR line width is found in NaV_2O_5 between 34-100 K and the line width increases as the resonance frequency is increased from 95 GHz to 760 GHz. The observed frequency dependence is qualitatively explained in terms of the dynamical charge disproportionation. The present results show the essential role of the internal charge degree of freedom in a V-O-V bond. We have also proposed the existence of the Dzyaloshinsky-Moriya interaction in the low temperature charge ordered phase considering the breaking of the selection rule of ESR realized as the direct observation of the spin gap excitation.Comment: 9 figures submitted to J. Phys.Soc. Jp

    Heavy-Mass Behavior of Ordered Perovskites ACu3Ru4O12 (A = Na, Ca, La)

    Full text link
    We synthesized ACu3Ru4O12 (A = Na, Na0.5Ca0.5, Ca, Ca0.5La0.5, La) and measured their DC magnetization, AC susceptibility, specific heat, and resistivity, in order to investigate the effects of the hetero-valent substitution. A broad peak in the DC magnetization around 200 K was observed only in CaCu3Ru4O12, suggesting the Kondo effect due to localized Cu2+ ions. However, the electronic specific heat coefficients exhibit large values not only for CaCu3Ru4O12 but also for all the other samples. Moreover, the Wilson ratio and the Kadowaki-Woods ratio of our samples are all similar to the values of other heavy-fermion compounds. These results question the Kondo effect as the dominant origin of the mass enhancement, and rather indicate the importance of correlations among itinerant Ru electrons.Comment: 6 pages, 6 figures, to be published in J. Phys. Soc. Jp

    Stratification of the orbit space in gauge theories. The role of nongeneric strata

    Full text link
    Gauge theory is a theory with constraints and, for that reason, the space of physical states is not a manifold but a stratified space (orbifold) with singularities. The classification of strata for smooth (and generalized) connections is reviewed as well as the formulation of the physical space as the zero set of a momentum map. Several important features of nongeneric strata are discussed and new results are presented suggesting an important role for these strata as concentrators of the measure in ground state functionals and as a source of multiple structures in low-lying excitations.Comment: 22 pages Latex, 1 figur

    Theory of Two-Dimensional Quantum Heisenberg Antiferromagnets with a Nearly Critical Ground State

    Full text link
    We present the general theory of clean, two-dimensional, quantum Heisenberg antiferromagnets which are close to the zero-temperature quantum transition between ground states with and without long-range N\'{e}el order. For N\'{e}el-ordered states, `nearly-critical' means that the ground state spin-stiffness, ρs\rho_s, satisfies ρs≪J\rho_s \ll J, where JJ is the nearest-neighbor exchange constant, while `nearly-critical' quantum-disordered ground states have a energy-gap, Δ\Delta, towards excitations with spin-1, which satisfies Δ≪J\Delta \ll J. Under these circumstances, we show that the wavevector/frequency-dependent uniform and staggered spin susceptibilities, and the specific heat, are completely universal functions of just three thermodynamic parameters. Explicit results for the universal scaling functions are obtained by a 1/N1/N expansion on the O(N)O(N) quantum non-linear sigma model, and by Monte Carlo simulations. These calculations lead to a variety of testable predictions for neutron scattering, NMR, and magnetization measurements. Our results are in good agreement with a number of numerical simulations and experiments on undoped and lightly-doped La2−δSrδCuO4La_{2-\delta} Sr_{\delta}Cu O_4.Comment: 81 pages, REVTEX 3.0, smaller updated version, YCTP-xxx

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore