1,220 research outputs found
On the statistical interpretation of optical rogue waves
Numerical simulations are used to discuss various aspects of "optical rogue
wave" statistics observed in noise-driven fiber supercontinuum generation
associated with highly incoherent spectra. In particular, we consider how long
wavelength spectral filtering influences the characteristics of the statistical
distribution of peak power, and we contrast the statistics of the spectrally
filtered SC with the statistics of both the peak power of the most red-shifted
soliton in the SC and the maximum peak power across the full temporal field
with no spectral selection. For the latter case, we show that the unfiltered
statistical distribution can still exhibit a long-tail, but the extreme-events
in this case correspond to collisions between solitons of different
frequencies. These results confirm the importance of collision dynamics in
supercontinuum generation. We also show that the collision-induced events
satisfy an extended hydrodynamic definition of "rogue wave" characteristics.Comment: Paper accepted for publication in the European Physical Journal ST,
Special Topics. Discussion and Debate: Rogue Waves - towards a unifying
concept? To appear 201
Evolution in prostheses for sprinters with lower-limb amputation
Depuis une quinzaine d'années, les progrès techniques en appareillage ont été le facteur déterminant de la progression des performances des sportifs amputés de membre inférieur. Pour l'amputé tibial, la prothèse de course comprend un manchon gel et une emboîture solidarisés par un accrochage distal ou un vide virtuel. Par ses qualités dynamiques, le pied en fibre de carbone, garni de pointes, assure des performances remarquables. Pour l'amputé fémoral, équipé des mêmes pieds prothétiques, le genou est à biellettes et à contrôle des phases d'appui et pendulaire. Par rapport au coureur valide, le temps d'appui sur le membre appareillé est raccourci tandis que celui sur le membre sain est allongé. L'asymétrie du sprint de l'amputé tibial est discrète. C'est le travail des extenseurs de hanche qui est la principale compensation au déficit de propulsion dû à l'amputation. Chez l'amputé fémoral, l'absence de genou aggrave l'asymétrie. L'extension totale du genou prothétique, précoce en fin de phase oscillante et persistant pendant toute la phase d'appui, impose une compensation par une augmentation d'extension de la hanche controlatérale. Les transferts de charge de travail entre côté amputé et sain, par l'intermédiaire d'une hyperlordose lombaire, mettent en jeu le bassin, le tronc et les épaules. Les amputés sportifs font progresser la recherche en appareillage. Leurs orthoprothésistes acquièrent avec eux un savoir-faire dont bénéficient leurs patients non-sportifs.For about 15 years, technical advances in prosthetic treatment have been the main factor in the increased performance of athletes with lower-limb amputation. For trans-tibial amputation, the prosthesis for sprinting is composed of a gel liner and a socket joined by a locking or virtual vacuum liner. Because of these dynamic properties, the carbon prosthetic foot equipped with tacks ensures outstanding performance. For trans-femoral amputation, a hydraulic swing and a stance control unit are added to the same prosthesis. In comparison with the able-bodied runner, athletes with amputation have smaller loading times in the prosthetic limb and larger ones in the sound limb. The length of the energy-storing prosthetic foot is determined by the “up-on-the-toes” running gait. The sprinting gait with trans-tibial amputation is almost symmetrical. The hip extensor effort is the main compensation of propulsion reduction with lower-limb amputation. With trans-femoral amputation, the lack of knee increases the asymmetry. The total prosthetic knee extension (early in late-swing phase and lasting during total stance phase) compensates with extension of both hips, especially the opposite one. The amputation and sound limb load transfer with lumbar hyperlordosis concern the pelvis, trunk and shoulders. Because of athletes with amputation, research in prosthetic treatment has progressed. The development of orthotics and prostheses for such athletes has benefited non-athletes with amputation
Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation
Numerical simulations of the onset phase of continuous wave supercontinuum
generation from modulation instability show that the structure of the field as
it develops can be interpreted in terms of the properties of Akhmediev
Breathers. Numerical and analytical results are compared with experimental
measurements of spectral broadening in photonic crystal fiber using nanosecond
pulsesComment: 22 pages, 6 figure
Theory of radiation trapping by the accelerating solitons in optical fibers
We present a theory describing trapping of the normally dispersive radiation
by the Raman solitons in optical fibers. Frequency of the radiation component
is continuously blue shifting, while the soliton is red shifting. Underlying
physics of the trapping effect is in the existence of the inertial gravity-like
force acting on light in the accelerating frame of reference. We present
analytical calculations of the rate of the opposing frequency shifts of the
soliton and trapped radiation and find it to be greater than the rate of the
red shift of the bare Raman soliton. Our findings are essential for
understanding of the continuous shift of the high frequency edge of the
supercontinuum spectra generated in photonic crystal fibers towards higher
frequencies.Comment: Several misprints in text and formulas corrected. 10 pages, 9
figures, submitted to Phys. Rev.
Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime
Numerical simulations are used to study how fiber supercontinuum generation
seeded by picosecond pulses can be actively controlled through the use of input
pulse modulation. By carrying out multiple simulations in the presence of
noise, we show how tailored supercontinuum Spectra with increased bandwidth and
improved stability can be generated using an input envelope modulation of
appropriate frequency and depth. The results are discussed in terms of the
non-linear propagation dynamics and pump depletion.Comment: Aspects of this work were presented in Paper ThJ2 at OECC/ACOFT 2008,
Sydney Australia 7-10 July (2008). Journal paper submitted for publication 30
July 200
Social network analysis shows direct evidence for social transmission of tool use in wild chimpanzees
The authors are grateful to the Royal Zoological Society of Scotland for providing core funding for the Budongo Conservation Field Station. The fieldwork of CH was funded by the Leverhulme Trust, the Lucie Burgers Stichting, and the British Academy. TP was funded by the Canadian Research Chair in Continental Ecosystem Ecology, and received computational support from the Theoretical Ecosystem Ecology group at UQAR. The research leading to these results has received funding from the People Programme (Marie Curie Actions) and from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007–2013) REA grant agreement n°329197 awarded to TG, ERC grant agreement n° 283871 awarded to KZ. WH was funded by a BBSRC grant (BB/I007997/1).Social network analysis methods have made it possible to test whether novel behaviors in animals spread through individual or social learning. To date, however, social network analysis of wild populations has been limited to static models that cannot precisely reflect the dynamics of learning, for instance, the impact of multiple observations across time. Here, we present a novel dynamic version of network analysis that is capable of capturing temporal aspects of acquisition-that is, how successive observations by an individual influence its acquisition of the novel behavior. We apply this model to studying the spread of two novel tool-use variants, "moss-sponging'' and "leaf-sponge re-use,'' in the Sonso chimpanzee community of Budongo Forest, Uganda. Chimpanzees are widely considered the most "cultural'' of all animal species, with 39 behaviors suspected as socially acquired, most of them in the domain of tool-use. The cultural hypothesis is supported by experimental data from captive chimpanzees and a range of observational data. However, for wild groups, there is still no direct experimental evidence for social learning, nor has there been any direct observation of social diffusion of behavioral innovations. Here, we tested both a static and a dynamic network model and found strong evidence that diffusion patterns of moss-sponging, but not leaf-sponge re-use, were significantly better explained by social than individual learning. The most conservative estimate of social transmission accounted for 85% of observed events, with an estimated 15-fold increase in learning rate for each time a novice observed an informed individual moss-sponging. We conclude that group-specific behavioral variants in wild chimpanzees can be socially learned, adding to the evidence that this prerequisite for culture originated in a common ancestor of great apes and humans, long before the advent of modern humans.Publisher PDFPeer reviewe
Determination of muon momentum in the MicroBooNE LArTPC using an improved model of multiple Coulomb scattering
We discuss a technique for measuring a charged particle's momentum by means
of multiple Coulomb scattering (MCS) in the MicroBooNE liquid argon time
projection chamber (LArTPC). This method does not require the full particle
ionization track to be contained inside of the detector volume as other track
momentum reconstruction methods do (range-based momentum reconstruction and
calorimetric momentum reconstruction). We motivate use of this technique,
describe a tuning of the underlying phenomenological formula, quantify its
performance on fully contained beam-neutrino-induced muon tracks both in
simulation and in data, and quantify its performance on exiting muon tracks in
simulation. Using simulation, we have shown that the standard Highland formula
should be re-tuned specifically for scattering in liquid argon, which
significantly improves the bias and resolution of the momentum measurement.
With the tuned formula, we find agreement between data and simulation for
contained tracks, with a small bias in the momentum reconstruction and with
resolutions that vary as a function of track length, improving from about 10%
for the shortest (one meter long) tracks to 5% for longer (several meter)
tracks. For simulated exiting muons with at least one meter of track contained,
we find a similarly small bias, and a resolution which is less than 15% for
muons with momentum below 2 GeV/c. Above 2 GeV/c, results are given as a first
estimate of the MCS momentum measurement capabilities of MicroBooNE for high
momentum exiting tracks
Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC
The low-noise operation of readout electronics in a liquid argon time
projection chamber (LArTPC) is critical to properly extract the distribution of
ionization charge deposited on the wire planes of the TPC, especially for the
induction planes. This paper describes the characteristics and mitigation of
the observed noise in the MicroBooNE detector. The MicroBooNE's single-phase
LArTPC comprises two induction planes and one collection sense wire plane with
a total of 8256 wires. Current induced on each TPC wire is amplified and shaped
by custom low-power, low-noise ASICs immersed in the liquid argon. The
digitization of the signal waveform occurs outside the cryostat. Using data
from the first year of MicroBooNE operations, several excess noise sources in
the TPC were identified and mitigated. The residual equivalent noise charge
(ENC) after noise filtering varies with wire length and is found to be below
400 electrons for the longest wires (4.7 m). The response is consistent with
the cold electronics design expectations and is found to be stable with time
and uniform over the functioning channels. This noise level is significantly
lower than previous experiments utilizing warm front-end electronics.Comment: 36 pages, 20 figure
Recommended from our members
Reconstruction and measurement of (100) MeV energy electromagnetic activity from π0 arrow γγ decays in the MicroBooNE LArTPC
We present results on the reconstruction of electromagnetic (EM) activity from photons produced in charged current νμ interactions with final state π0s. We employ a fully-automated reconstruction chain capable of identifying EM showers of (100) MeV energy, relying on a combination of traditional reconstruction techniques together with novel machine-learning approaches. These studies demonstrate good energy resolution, and good agreement between data and simulation, relying on the reconstructed invariant π0 mass and other photon distributions for validation. The reconstruction techniques developed are applied to a selection of νμ + Ar → μ + π0 + X candidate events to demonstrate the potential for calorimetric separation of photons from electrons and reconstruction of π0 kinematics
- …
