595 research outputs found

    Detailed chemical compositions of planet hosting stars: I. Exploration of possible planet signatures

    Get PDF
    We present a line-by-line differential analysis of a sample of 16 planet hosting stars and 68 comparison stars using high resolution, high signal-to-noise ratio spectra gathered using Keck. We obtained accurate stellar parameters and high-precision relative chemical abundances with average uncertainties in \teff, \logg, [Fe/H] and [X/H] of 15 K, 0.034 [cgs], 0.012 dex and 0.025 dex, respectively. For each planet host, we identify a set of comparison stars and examine the abundance differences (corrected for Galactic chemical evolution effect) as a function of the dust condensation temperature, \tcond, of the individual elements. While we confirm that the Sun exhibits a negative trend between abundance and \tcond, we also confirm that the remaining planet hosts exhibit a variety of abundance - \tcond\ trends with no clear dependence upon age, metallicity or \teff. The diversity in the chemical compositions of planet hosting stars relative to their comparison stars could reflect the range of possible planet-induced effects present in these planet hosts, from the sequestration of rocky material (refractory poor), to the possible ingestion of planets (refractory rich). Other possible explanations include differences in the timescale, efficiency and degree of planet formation or inhomogeneous chemical evolution. Although we do not find an unambiguous chemical signature of planet formation among our sample, the high-precision chemical abundances of the host stars are essential for constraining the composition and structure of their exoplanets.Comment: 14 pages, 10 figures, accepted for publication in MNRA

    Bradyrhizobium japonicum senses iron through the status of haem to regulate iron homeostasis and metabolism

    Get PDF
    The Irr protein from the bacterium Bradyrhizobium japonicum is expressed under iron limitation to mediate iron control of haem biosynthesis. The regulatory input to Irr is the status of haem and its precursors iron and protoporphyrin at the site of haem synthesis. Here, we show that Irr controls the expression of iron transport genes and many other iron-regulated genes not directly involved in haem synthesis. Irr is both a positive and negative effector of gene expression, and in at least some cases the control is direct. Loss of normal iron responsiveness of those genes in an irr mutant, as well as a lower total cellular iron content, suggests that Irr is required for the correct perception of the cellular iron status. Degradation of Irr in iron replete cells requires haem. Accordingly, control of Irr-regulated genes by iron was aberrant in a haem-defective strain, and iron replete mutant cells behave as if they are iron-limited. In addition, the haem mutant had an abnormally high cellular iron content. The findings indicate that B. japonicum senses iron via the status of haem biosynthesis in an Irr-dependent manner to regulate iron homeostasis and metabolism

    Coronal mass ejections, magnetic clouds, and relativistic magnetospheric electron events: ISTP

    Get PDF
    The role of high-speed solar wind streams in driving relativistic electron acceleration within the Earth\u27s magnetosphere during solar activity minimum conditions has been well documented. The rising phase of the new solar activity cycle (cycle 23) commenced in 1996, and there have recently been a number of coronal mass ejections (CMEs) and related “magnetic clouds” at 1 AU. As these CME/cloud systems interact with the Earth\u27s magnetosphere, some events produce substantial enhancements in the magnetospheric energetic particle population while others do not. This paper compares and contrasts relativistic electron signatures observed by the POLAR, SAMPEX, Highly Elliptical Orbit, and geostationary orbit spacecraft during two magnetic cloud events: May 27–29, 1996, and January 10–11, 1997. Sequences were observed in each case in which the interplanetary magnetic field was first strongly southward and then rotated northward. In both cases, there were large solar wind density enhancements toward the end of the cloud passage at 1 AU. Strong energetic electron acceleration was observed in the January event, but not in the May event. The relative geoeffectiveness for these two cases is assessed, and it is concluded that large induced electric fields (∂B/∂t) caused in situ acceleration of electrons throughout the outer radiation zone during the January 1997 event

    Distance dependence of single-molecule energy transfer to graphene measured with DNA origami nanopositioners

    Get PDF
    Despite the thorough investigation of graphene since 2004, altering its surface chemistry and reproducible functionalization remain challenging. This hinders fabrication of more complex hybrid materials with controlled architectures, and as a consequence the development of sensitive and reliable sensors and biological assays. In this contribution, we introduce DNA origami structures as nanopositioners for placing single dye molecules at controlled distances from graphene. The measurements of fluorescence intensity and lifetime of single emitters carried out for distances ranging from 3 to 58 nm confirmed the d–4 dependence of the excitation energy transfer to graphene. Moreover, we determined the characteristic distance for 50% efficiency of the energy transfer from single dyes to graphene to be 17.7 nm. Using pyrene molecules as a glue to immobilize DNA origami nanostructures of various shape on graphene opens new possibilities to develop graphene-based biophysics and biosensing

    Epidemiology and molecular characterization of Carnivore protoparvovirus-1 infection in the wild felid Leopardus guigna in Chile

    Get PDF
    Landscape anthropization has been identified as one of the main drivers of pathogen emergence worldwide, facilitating pathogen spillover between domestic species and wildlife. The present study investigated Carnivore protoparvovirus-1 infection using molecular methods in 98 free-ranging wild guignas (Leopardus guigna) and 262 co-occurring owned, free-roaming rural domestic cats. We also assessed landscape anthropization variables as potential drivers of infection. Protoparvovirus DNA was detected in guignas across their entire distribution range, with observed prevalence of 13.3% (real-time PCR) and 9% (conventional PCR) in guignas, and 6.1% (conventional PCR) in cats. Prevalence in guigna did not vary depending on age, sex, study area or landscape variables. Prevalence was higher in juvenile cats (16.7%) than in adults (4.4%). Molecular characterization of the virus by amplification and sequencing of almost the entire vp2 gene (1, 746 bp) from one guigna and five domestic cats was achieved, showing genetic similarities to canine parvovirus 2c (CPV-2c) (one guigna and one cat), feline panleukopenia virus (FPV) (one cat), CPV-2 (no subtype identified) (two cats), CPV-2a (one cat). The CVP-2c-like sequence found in a guigna clustered together with domestic cat and dog CPV-2c sequences from South America, suggesting possible spillover from a domestic to a wild species as the origin of infection in guigna. No clinical signs of disease were found in PCR-positive animals except for a CPV-2c-infected guigna, which had haemorrhagic diarrhoea and died a few days after arrival at a wildlife rescue centre. Our findings reveal widespread presence of Carnivore protoparvovirus-1 across the guigna distribution in Chile and suggest that virus transmission potentially occurs from domestic to wild carnivores, causing severe disease and death in susceptible wild guignas

    Equation-Free Multiscale Computational Analysis of Individual-Based Epidemic Dynamics on Networks

    Full text link
    The surveillance, analysis and ultimately the efficient long-term prediction and control of epidemic dynamics appear to be one of the major challenges nowadays. Detailed atomistic mathematical models play an important role towards this aim. In this work it is shown how one can exploit the Equation Free approach and optimization methods such as Simulated Annealing to bridge detailed individual-based epidemic simulation with coarse-grained, systems-level, analysis. The methodology provides a systematic approach for analyzing the parametric behavior of complex/ multi-scale epidemic simulators much more efficiently than simply simulating forward in time. It is shown how steady state and (if required) time-dependent computations, stability computations, as well as continuation and numerical bifurcation analysis can be performed in a straightforward manner. The approach is illustrated through a simple individual-based epidemic model deploying on a random regular connected graph. Using the individual-based microscopic simulator as a black box coarse-grained timestepper and with the aid of Simulated Annealing I compute the coarse-grained equilibrium bifurcation diagram and analyze the stability of the stationary states sidestepping the necessity of obtaining explicit closures at the macroscopic level under a pairwise representation perspective

    Strong plasmonic enhancement of single molecule photostability in silver dimer optical antennas

    Get PDF
    Photobleaching is an effect terminating the photon output of fluorophores, limiting the duration of fluorescence-based experiments. Plasmonic nanoparticles (NPs) can increase the overall fluorophore photostability through an enhancement of the radiative rate. In this work, we use the DNA origami technique to arrange a single fluorophore in the 12-nm gap of a silver NP dimer and study the number of emitted photons at the single molecule level. Our findings yielded a 30× enhancement in the average number of photons emitted before photobleaching. Numerical simulations are employed to rationalize our results. They reveal the effect of silver oxidation on decreasing the radiative rate enhancement.We acknowledge funding by a starting grant (SiMBA, EU 261162) of the European Research Council (ERC) and the Deutsche Forschungsgesellschaft (AC 279/2-1 and TI 329/9-1). IK is grateful for the support by the Mobility Plus grant 1269/MOB/IV/2015/0 from the Polish Ministry of Science and Higher Education (MNiSW). CV thanks a scholarship of the Studienstiftung des deutschen Volkes. AIF-D and AC-G acknowledge funding from the Spanish MINECO under Contracts FIS2015- 64951-R and MDM-2014-0377-16-4, respectively. AIF-D also acknowledges funding from EU Seventh Framework Programme under Grant Agreement FP7-PEOPLE- 2013-CIG-630996. GA and PT acknowledge funding of the state ministry for research of lower saxony in the frame of the “Quantum- and Nanometrology” (QUANOMET) strategic research area. Quanomet is part of the LUH-TUBS research allianc

    Controlled reduction of photobleaching in DNA origami gold nanoparticle hybrids

    Get PDF
    The amount of information obtainable from a fluorescence-based measurement is limited by photobleaching: Irreversible photochemical reactions either render the molecules nonfluorescent or shift their absorption and/or emission spectra outside the working range. Photobleaching is evidenced as a decrease of fluorescence intensity with time, or in the case of single molecule measurements, as an abrupt, single-step interruption of the fluorescence emission that determines the end of the experiment. Reducing photobleaching is central for improving fluorescence (functional) imaging, single molecule tracking, and fluorescence-based biosensors and assays. In this single molecule study, we use DNA self-assembly to produce hybrid nanostructures containing individual fluorophores and gold nanoparticles at a controlled separation distance of 8.5 nm. By changing the nanoparticles? size we are able to systematically increase the mean number of photons emitted by the fluorophores before photobleaching.Fil: Pellegrotti, Jesica Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Acuña, Guillermo. Technische Universität Braunschweig. Institute for Physical and Theoretical Chemistry. NanoBioSciences Group; AlemaniaFil: Puchkova, Anastasiya. Technische Universität Braunschweig. Institute for Physical and Theoretical Chemistry. NanoBioSciences Group; AlemaniaFil: Holzmeister, Phil. Technische Universität Braunschweig. Institute for Physical and Theoretical Chemistry. NanoBioSciences Group; AlemaniaFil: Gietl, Andreas. Technische Universität Braunschweig. Institute for Physical and Theoretical Chemistry. NanoBioSciences Group; AlemaniaFil: Lalkens, Birka. Technische Universität Braunschweig. Institute for Physical and Theoretical Chemistry. NanoBioSciences Group; AlemaniaFil: Stefani, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Tinnefeld, Philip. Technische Universität Braunschweig. Institute for Physical and Theoretical Chemistry. NanoBioSciences Group; Alemani
    corecore