1,638 research outputs found

    Interactive Visualization of the Market Graph

    Get PDF
    Financial markets are a fruitful area for data exploration, but the overwhelming size and dimension of the datasets usually prohibit meaningful analysis, especially on a large scale. Thus, there is a need for effective visualization tools to assist in efficiently exploring the data space. In this paper, we present a novel visualization tool that empowers a user with an interactive tool for finding meaningful relationships in historical or real-time financial market data. To reduce the size of data to be visualized, we summarize the areas of interest within the market graph by displaying only the pre-computed clusters, and aggregated inter- and intra-cluster edges. Target graph structures and their associated attributes are encoded using several visually intuitive schemes, and a modified force-directed model is used to layout the graph with minimal visual clutter while retaining important spatial properties. We also provide a brief overview of an underlying parallel data-mining pipeline which enables us to apply this visualization tool to real-time stock market data

    A study of omega bands and Ps6 pulsations on the ground, at low altitude and at geostationary orbit

    Get PDF
    We investigate the electrodynamic coupling between auroral omega bands and the inner magnetosphere. The goal of this study is to determine the features to which omega bands map in the magnetosphere. To establish the auroral-magnetosphere connection, we appeal to the case study analysis of the data rich event of September 26, 1989. At 6 magnetic local time (MLT), two trains of Ps6 pulsations (ground magnetic signatures of omega bands) were observed to drift over the Canadian Auroral Network For the OPEN Program Unified Study (CANOPUS) chain. At the same time periodic ionospheric flow patterns moved through the collocated Bistatic Auroral Radar System (BARS) field of view. Similar coincident magnetic variations were observed by GOES 6, GOES 7 and SCATHA, all of which had magnetic foot points near the CANOPUS/BARS stations. SCATHA, which was located at 6 MLT, 0.5 RE earthward of GOES 7 observed the 10 min period pulsations, whereas GOES 7 did not. In addition, DMSP F6 and F8 were over-flying the region and observed characteristic precipitation and flow signatures. From this fortunate constellation of ground and space observations, we conclude that auroral omega bands are the electrodynamic signature of a corrugated current sheet (or some similar spatially localized magnetic structure) in the near-Earth geostationary magnetosphere

    Effects of substorms on the stormtime ring current index <i>Dst</i>

    No full text
    International audienceThere has been some discussion in recent times regarding whether or not substorm expansive phase activity plays any role of importance in the formation of the stormtime ring current. I explore this question using the Kp index as a proxy for substorm expansive phase activity and the Dst index as a proxy for symmetric ring current strength. I find that increases in Dst are mildly related to the strength of substorm expansive phase activity during the development of the storm main phase. More surprisingly, I find that the strength of Dst during the storm recovery phase is positively correlated with the strength of substorm expansive phase activity. This result has an important bearing on the question of how much the Dst index reflects activity other than that of the stormtime symmetric ring current strength for which it is supposed to be a proxy.Key words: Ionosphere (electric fields and currents) - Magnetospheric physics (current systems; storms and substorms

    Colloids in Dialytic Refractory Hypotension

    Get PDF

    Single-Needle Hemodialysis on Native Fistulae

    Get PDF

    High yield fusion in a Staged Z-pinch

    Get PDF
    We simulate fusion in a Z-pinch; where the load is a xenon-plasma liner imploding onto a deuterium-tritium plasma target and the driver is a 2 MJ, 17 MA, 95 ns risetime pulser. The implosion system is modeled using the dynamic, 2-1/2 D, radiation-MHD code, MACH2. During implosion a shock forms in the Xe liner, transporting current and energy radially inward. After collision with the DT, a secondary shock forms pre-heating the DT to several hundred eV. Adiabatic compression leads subsequently to a fusion burn, as the target is surrounded by a flux-compressed, intense, azimuthal-magnetic field. The intense-magnetic field confines fusion α\alpha-particles, providing an additional source of ion heating that leads to target ignition. The target remains stable up to the time of ignition. Predictions are for a neutron yield of 3.0×10193.0\times 10^{19} and a thermonuclear energy of 84 MJ, that is, 42 times greater than the initial, capacitor-stored energy

    Modified elongated betatron accelerator

    Get PDF

    Heavy Ion Toroidal Collective Accelerator

    Get PDF

    Creation of the substorm current wedge through the perturbation of the directly driven current system: a new model for substorm expansion

    No full text
    International audienceThe past four decades have seen a considerable amount of research on the study of magnetospheric substorms, and over most of these years the expansive phase of the substorm has been associated with the development of a three dimensional current system that has been termed the substorm current wedge. This current system has been thought to be a consequence of the short-circuiting of crosstail current through the ionosphere, and is viewed as a distinctive current system operating independently from the directly driven current with which it co-exists. The purpose of this paper is to show that the substorm current wedge should be viewed as an equivalent current system rather than a real current system. It will be shown that the magnetic perturbation pattern associated with the current wedge can be modeled as purely a perturbation of the directly driven current system in the midnight sector. Keywords. Magnetospheric physics (Auroral phenomena; Current systems; Magnetotail; Storms and substorm

    α\alpha-Particle Spectrum in the Reaction p+11^{11}B→α+8Be∗→3α\to \alpha + ^8Be^*\to 3\alpha

    Full text link
    Using a simple phenomenological parametrization of the reaction amplitude we calculated α\alpha-particle spectrum in the reaction p+11^{11}B→α+8Be∗→3α\to \alpha + ^8Be^*\to 3\alpha at the resonance proton energy 675 KeV. The parametrization includes Breit-Wigner factor with an energy dependent width for intermediate 8Be∗^8Be^* state and the Coulomb and the centrifugal factors in α\alpha-particle emission vertexes. The shape of the spectrum consists of a well defined peak corresponding to emission of the primary α\alpha and a flat shoulder going down to very low energy. We found that below 1.5 MeV there are 17.5% of α\alpha's and below 1 MeV there are 11% of them.Comment: 6 pages, 3 figure
    • …
    corecore