1,538 research outputs found

    Epitaxial growth of gallium arsenide with ammonium halides as transporting agents

    Get PDF
    Epitaxial growth of gallium arsenide with ammonium halides as transporting agent

    A resampling-based test to detect person-to-person transmission of infectious disease

    Full text link
    Early detection of person-to-person transmission of emerging infectious diseases such as avian influenza is crucial for containing pandemics. We developed a simple permutation test and its refined version for this purpose. A simulation study shows that the refined permutation test is as powerful as or outcompetes the conventional test built on asymptotic theory, especially when the sample size is small. In addition, our resampling methods can be applied to a broad range of problems where an asymptotic test is not available or fails. We also found that decent statistical power could be attained with just a small number of cases, if the disease is moderately transmissible between humans.Comment: Published at http://dx.doi.org/10.1214/07-AOAS105 in the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Molecular Infectious Disease Epidemiology: Survival Analysis and Algorithms Linking Phylogenies to Transmission Trees

    Full text link
    Recent work has attempted to use whole-genome sequence data from pathogens to reconstruct the transmission trees linking infectors and infectees in outbreaks. However, transmission trees from one outbreak do not generalize to future outbreaks. Reconstruction of transmission trees is most useful to public health if it leads to generalizable scientific insights about disease transmission. In a survival analysis framework, estimation of transmission parameters is based on sums or averages over the possible transmission trees. A phylogeny can increase the precision of these estimates by providing partial information about who infected whom. The leaves of the phylogeny represent sampled pathogens, which have known hosts. The interior nodes represent common ancestors of sampled pathogens, which have unknown hosts. Starting from assumptions about disease biology and epidemiologic study design, we prove that there is a one-to-one correspondence between the possible assignments of interior node hosts and the transmission trees simultaneously consistent with the phylogeny and the epidemiologic data on person, place, and time. We develop algorithms to enumerate these transmission trees and show these can be used to calculate likelihoods that incorporate both epidemiologic data and a phylogeny. A simulation study confirms that this leads to more efficient estimates of hazard ratios for infectiousness and baseline hazards of infectious contact, and we use these methods to analyze data from a foot-and-mouth disease virus outbreak in the United Kingdom in 2001. These results demonstrate the importance of data on individuals who escape infection, which is often overlooked. The combination of survival analysis and algorithms linking phylogenies to transmission trees is a rigorous but flexible statistical foundation for molecular infectious disease epidemiology.Comment: 28 pages, 11 figures, 3 table

    Twitter as Limited Digital Rhetorical Forum – The Reproductive Rights Discourse Online

    Get PDF
    Rhetorical discourse has long been characterized by patriarchal systems, and this reality has persisted in online spaces. How might today’s scholar dissect and better understand the nature of online communities, specifically those that engage in women’s rights discourses? I argue that using Thomas Farrell’s notion of “rhetorical forum”, James P. Zappen’s outline for digital rhetorical theory, and Sonja K. Foss and Cindy L. Griffin’s feminist understanding of rhetorical practice, one can account for the current state of such discourses on Twitter. The patriarchal flaws that Foss and Griffin identify in traditional rhetoric can shed light on the negative aspects of online forums about women’s rights. Their suggestion for a feminist invitational rhetoric – one that employs “offering” instead of aggressive persuasion – may suggest actionable steps to improving the state of women’s rights discourses in online spaces. Perhaps these scholar’s frameworks are useful in developing implications for fostering more productive conversations in the oft-too-polarized communities of social medias. To focus in on a specific discourse and community, I will examine how women’s rights discourses emerge, operate, and succeed or fail within the context of abortion rights debates on Twitter. Using Farrell’s “forum” and Zappen’s digital rhetorical framework, I delineate the characteristics of Twitter as a digital rhetorical forum. I then go on to identify the shortcomings of the abortion rights discourse as it exists on Twitter using Foss and Griffin’s insights about the failures of patriarchal systems of persuasive rhetoric. I will then suggest actionable items for improving the efficacy of Twitter discourse using Foss and Griffin’s “invitational rhetoric”, including a look at improving women’s access to the esoteric rhetorical theories that allow for progress in such discursive communities. This research will provide valuable insights into how communities of women’s rights discourse are developed, fostered, and interpreted in online spaces. It will also help reveal issues of access, platform, and voice in digital rhetoric. All of these topics, while developed under a rhetorical theory lens, are very relevant to the understanding of community, care, and crisis in women’s and gender studies at large

    A Comparative Analysis of Influenza Vaccination Programs

    Get PDF
    The threat of avian influenza and the 2004-2005 influenza vaccine supply shortage in the United States has sparked a debate about optimal vaccination strategies to reduce the burden of morbidity and mortality caused by the influenza virus. We present a comparative analysis of two classes of suggested vaccination strategies: mortality-based strategies that target high risk populations and morbidity-based that target high prevalence populations. Applying the methods of contact network epidemiology to a model of disease transmission in a large urban population, we evaluate the efficacy of these strategies across a wide range of viral transmission rates and for two different age-specific mortality distributions. We find that the optimal strategy depends critically on the viral transmission level (reproductive rate) of the virus: morbidity-based strategies outperform mortality-based strategies for moderately transmissible strains, while the reverse is true for highly transmissible strains. These results hold for a range of mortality rates reported for prior influenza epidemics and pandemics. Furthermore, we show that vaccination delays and multiple introductions of disease into the community have a more detrimental impact on morbidity-based strategies than mortality-based strategies. If public health officials have reasonable estimates of the viral transmission rate and the frequency of new introductions into the community prior to an outbreak, then these methods can guide the design of optimal vaccination priorities. When such information is unreliable or not available, as is often the case, this study recommends mortality-based vaccination priorities

    Preclinical Assessment of HIV Vaccines and Microbicides by Repeated Low-Dose Virus Challenges

    Get PDF
    BACKGROUND: Trials in macaque models play an essential role in the evaluation of biomedical interventions that aim to prevent HIV infection, such as vaccines, microbicides, and systemic chemoprophylaxis. These trials are usually conducted with very high virus challenge doses that result in infection with certainty. However, these high challenge doses do not realistically reflect the low probability of HIV transmission in humans, and thus may rule out preventive interventions that could protect against “real life” exposures. The belief that experiments involving realistically low challenge doses require large numbers of animals has so far prevented the development of alternatives to using high challenge doses. METHODS AND FINDINGS: Using statistical power analysis, we investigate how many animals would be needed to conduct preclinical trials using low virus challenge doses. We show that experimental designs in which animals are repeatedly challenged with low doses do not require unfeasibly large numbers of animals to assess vaccine or microbicide success. CONCLUSION: Preclinical trials using repeated low-dose challenges represent a promising alternative approach to identify potential preventive interventions

    Estimating within-household contact networks from egocentric data

    Full text link
    Acute respiratory diseases are transmitted over networks of social contacts. Large-scale simulation models are used to predict epidemic dynamics and evaluate the impact of various interventions, but the contact behavior in these models is based on simplistic and strong assumptions which are not informed by survey data. These assumptions are also used for estimating transmission measures such as the basic reproductive number and secondary attack rates. Development of methodology to infer contact networks from survey data could improve these models and estimation methods. We contribute to this area by developing a model of within-household social contacts and using it to analyze the Belgian POLYMOD data set, which contains detailed diaries of social contacts in a 24-hour period. We model dependency in contact behavior through a latent variable indicating which household members are at home. We estimate age-specific probabilities of being at home and age-specific probabilities of contact conditional on two members being at home. Our results differ from the standard random mixing assumption. In addition, we find that the probability that all members contact each other on a given day is fairly low: 0.49 for households with two 0--5 year olds and two 19--35 year olds, and 0.36 for households with two 12--18 year olds and two 36+ year olds. We find higher contact rates in households with 2--3 members, helping explain the higher influenza secondary attack rates found in households of this size.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS474 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Estimating within-school contact networks to understand influenza transmission

    Get PDF
    Many epidemic models approximate social contact behavior by assuming random mixing within mixing groups (e.g., homes, schools and workplaces). The effect of more realistic social network structure on estimates of epidemic parameters is an open area of exploration. We develop a detailed statistical model to estimate the social contact network within a high school using friendship network data and a survey of contact behavior. Our contact network model includes classroom structure, longer durations of contacts to friends than nonfriends and more frequent contacts with friends, based on reports in the contact survey. We performed simulation studies to explore which network structures are relevant to influenza transmission. These studies yield two key findings. First, we found that the friendship network structure important to the transmission process can be adequately represented by a dyad-independent exponential random graph model (ERGM). This means that individual-level sampled data is sufficient to characterize the entire friendship network. Second, we found that contact behavior was adequately represented by a static rather than dynamic contact network.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS505 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Influenza Pandemic Vaccines: Spread Them Thin?

    Get PDF
    Fraser discusses a new study that uses exploratory modeling to tackle the difficult issue of what to do with limited stockpiles of pre-prepared influenza pandemic vaccines

    Predictive Modeling of Cholera Outbreaks in Bangladesh

    Full text link
    Despite seasonal cholera outbreaks in Bangladesh, little is known about the relationship between environmental conditions and cholera cases. We seek to develop a predictive model for cholera outbreaks in Bangladesh based on environmental predictors. To do this, we estimate the contribution of environmental variables, such as water depth and water temperature, to cholera outbreaks in the context of a disease transmission model. We implement a method which simultaneously accounts for disease dynamics and environmental variables in a Susceptible-Infected-Recovered-Susceptible (SIRS) model. The entire system is treated as a continuous-time hidden Markov model, where the hidden Markov states are the numbers of people who are susceptible, infected, or recovered at each time point, and the observed states are the numbers of cholera cases reported. We use a Bayesian framework to fit this hidden SIRS model, implementing particle Markov chain Monte Carlo methods to sample from the posterior distribution of the environmental and transmission parameters given the observed data. We test this method using both simulation and data from Mathbaria, Bangladesh. Parameter estimates are used to make short-term predictions that capture the formation and decline of epidemic peaks. We demonstrate that our model can successfully predict an increase in the number of infected individuals in the population weeks before the observed number of cholera cases increases, which could allow for early notification of an epidemic and timely allocation of resources.Comment: 43 pages, including appendices, 5 figures, 1 table in the main tex
    corecore