160 research outputs found

    First snapshot on behavioral characteristics and related factors of patients with chronic kidney disease in South Korea during the COVID-19 pandemic (June to October 2020)

    Get PDF
    Background The recent novel coronavirus disease 2019 (COVID-19) pandemic has led to unprecedented changes in behavior. We evaluated the current status of precautionary behavior and physical activity in chronic kidney disease (CKD) patients during the COVID-19 pandemic. Methods A population of CKD patients (n = 306) registered in the Study on Kidney Disease and Environmental Chemicals (SKETCH, Clinical Trial No. NCT04679168) cohort recruited from June 2020 to October 2020 was included in the study. We conducted a questionnaire survey related to risk perception of COVID-19, precautionary behavior, and physical activity. Results There were 187 patients (61.1%) with estimated glomerular filtration rate of <45 mL/min/1.73 m2. This population showed a higher degree of risk perception for COVID-19 than the general population. Age was the most significant determinant of risk perception among CKD patients. During the pandemic, social distancing and hygiene-related behavior were significantly increased (p < 0.001). The frequency of exercise was decreased only in those who took regular exercise, without diabetes, or with a lower Charlson comorbidity index (CCI) (p < 0.001), with no change among the other groups. Socioeconomic status and comorbidities significantly affected behavioral characteristics regardless of the category. Education and income were significantly associated with precautionary behaviors such as staying at home and hand sanitizer use. Patients with higher CCI status significantly increased frequency of exercise (adjusted odds ratio, 2.10; 95% confidence interval, 1.01–4.38). Conclusion CKD patients showed higher risk perception with active precautionary behavioral changes than the general population. Healthcare providers should be aware of the characteristics to comprise precautionary behavior without reducing physical activity

    Extracting a stroke phenotype risk factor from Veteran Health Administration clinical reports: an information content analysis

    Get PDF
    In the United States, 795,000 people suffer strokes each year; 10-15 % of these strokes can be attributed to stenosis caused by plaque in the carotid artery, a major stroke phenotype risk factor. Studies comparing treatments for the management of asymptom

    Advances in purification and separation of posttranslationally modified proteins

    Get PDF

    Trans-ethnic Meta-analysis and Functional Annotation Illuminates the Genetic Architecture of Fasting Glucose and Insulin

    Get PDF
    Knowledge of the genetic basis of the type 2 diabetes (T2D)-related quantitative traits fasting glucose (FG) and insulin (FI) in African ancestry (AA) individuals has been limited. In non-diabetic subjects of AA (n = 20,209) and European ancestry (EA; n = 57,292), we performed trans-ethnic (AA+EA) fine-mapping of 54 established EA FG or FI loci with detailed functional annotation, assessed their relevance in AA individuals, and sought previously undescribed loci through trans-ethnic (AA+EA) meta-analysis. We narrowed credible sets of variants driving association signals for 22/54 EA-associated loci; 18/22 credible sets overlapped with active islet-specific enhancers or transcription factor (TF) binding sites, and 21/22 contained at least one TF motif. Of the 54 EA-associated loci, 23 were shared between EA and AA. Replication with an additional 10,096 AA individuals identified two previously undescribed FI loci, chrX FAM133A (rs213676) and chr5 PELO (rs6450057). Trans-ethnic analyses with regulatory annotation illuminate the genetic architecture of glycemic traits and suggest gene regulation as a target to advance precision medicine for T2D. Our approach to utilize state-of-the-art functional annotation and implement trans-ethnic association analysis for discovery and fine-mapping offers a framework for further follow-up and characterization of GWAS signals of complex trait loc

    Pharmaceutical cost and multimorbidity with type 2 diabetes mellitus using electronic health record data

    Get PDF
    © 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.[EN] Background: The objective of the study is to estimate the frequency of multimorbidity in type 2 diabetes patients classified by health statuses in a European region and to determine the impact on pharmaceutical expenditure. Methods: Cross-sectional study of the inhabitants of a southeastern European region with a population of 5,150,054, using data extracted from Electronic Health Records for 2012. 491,854 diabetic individuals were identified and selected through clinical codes, Clinical Risk Groups and diabetes treatment and/or blood glucose reagent strips. Patients with type 1 diabetes and gestational diabetes were excluded. All measurements were obtained at individual level. The prevalence of common chronic diseases and co-occurrence of diseases was established using factorial analysis. Results: The estimated prevalence of diabetes was 9.6 %, with nearly 70 % of diabetic patients suffering from more than two comorbidities. The most frequent of these was hypertension, which for the groups of patients in Clinical Risk Groups (CRG) 6 and 7 was 84.3 % and 97.1 % respectively. Regarding age, elderly patients have more probability of suffering complications than younger people. Moreover, women suffer complications more frequently than men, except for retinopathy, which is more common in males. The highest use of insulins, oral antidiabetics (OAD) and combinations was found in diabetic patients who also suffered cardiovascular disease and neoplasms. The average cost for insulin was 153€ and that of OADs 306€. Regarding total pharmaceutical cost, the greatest consumers were patients with comorbidities of respiratory illness and neoplasms, with respective average costs of 2,034.2€ and 1,886.9€. Conclusions: Diabetes is characterized by the co-occurrence of other diseases, which has implications for disease management and leads to a considerable increase in consumption of medicines for this pathology and, as such, pharmaceutical expenditure.This study was financed by a grant from the Fondo de Investigaciones de la Seguridad Social Instituto de Salud Carlos III, the Spanish Ministry of Health (FIS PI12/0037).Sancho Mestre, C.; Vivas Consuelo, DJJ.; Alvis, L.; Romero, M.; Usó Talamantes, R.; Caballer Tarazona, V. (2016). Pharmaceutical cost and multimorbidity with type 2 diabetes mellitus using electronic health record data. BMC Health Services Research. 16(394):1-8. https://doi.org/10.1186/s12913-016-1649-2S1816394Whiting DR, Guariguata L, Weil C, Shaw J. IDF Diabetes Atlas: Global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011;94:311–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22079683Soriguer F, Goday A, Bosch-Comas A, Bordiu E, Calle-Pascual A, Carmena R, et al. Prevalence of diabetes mellitus and impaired glucose regulation in Spain: the [email protected] Study. Diabetologia. 2012;55:88–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21987347WHO | Rio Political Declaration on Social Determinants of Health. WHO. World Health Organization; 2011. Available from: http://www.who.int/sdhconference/declaration/Rio_political_declaration.pdf?ua=1Fortin M, Soubhi H, Hudon C, Bayliss EA, van den Akker M. Multimorbidity’s many challenges. BMJ. 2007;334:1016–7. BMJ Group [cited 2016 Aug 4]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17510108Valderas JM, Starfield B, Sibbald B, Salisbury C, Roland M. Defining comorbidity: implications for understanding health and health services. Ann Fam Med. 2009;7:357–63. [cited 2016 Aug 4]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19597174Sundararajan V, Henderson T, Perry C, Muggivan A, Quan H, Ghali WA. New ICD-10 version of the Charlson comorbidity index predicted in-hospital mortality. J Clin Epidemiol. 2004;57:1288–94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15617955Glynn LG, Valderas JM, Healy P, Burke E, Newell J, Gillespie P, et al. The prevalence of multimorbidity in primary care and its effect on health care utilization and cost. Fam Pract. 2011;28:516–23. [Internet]. 2011 [cited 2016 Aug 4]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21436204Barnett K, Mercer SW, Norbury M, Watt G, Wyke S, Guthrie B. Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study. Lancet. 2012;380:37–43. [cited 2014 Nov 5] Available from: http://www.ncbi.nlm.nih.gov/pubmed/22579043Holden L, Scuffham PA, Hilton MF, Muspratt A, Ng SK, Whiteford HA. Patterns of multimorbidity in working Australians. Popul Heal Metr. 2011;9:15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21635787Starfield B. Threads and yarns: weaving the tapestry of comorbidity. Ann Fam Med. 2006;4:101–3. [cited 2016 Aug 4]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16569711Abdul-Rahim HF, Holmboe-Ottesen G, Stene LCM, Husseini A, Giacaman R, Jervell J, et al. Obesity in a rural and an urban Palestinian West Bank population. Int J Obes. 2003;27:140–6. Available from: http://dx.doi.org/10.1038/sj.ijo.0802160Boutayeb A, Boutayeb S, Boutayeb W. Multi-morbidity of non communicable diseases and equity in WHO Eastern Mediterranean countries. Int J Equity Heal. 2013;12:60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23961989Teljeur C, Smith SM, Paul G, Kelly A, O’Dowd T. Multimorbidity in a cohort of patients with type 2 diabetes. Eur J Gen Pract. 2013;19:17–22. Available from: http://informahealthcare.com/doi/abs/10.3109/13814788.2012.714768 , http://www.ncbi.nlm.nih.gov/pubmed/23432037Hughes JS, Averill RF, Eisenhandler J, Goldfield NI, Muldoon J, Neff JM, et al. Clinical Risk Groups (CRGs): a classification system for risk-adjusted capitation-based payment and health care management. Med Care. 2004;42:81–90. [cited 2016 Feb 29]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14713742Vivas-Consuelo D, Alvis-Estrada L, Uso-Talamantes R, Caballer-Tarazona V, Buigues-Pastor L, Sancho-Mestre C. Multimorbidity Pharmaceutical Cost of Diabetes Mellitus. Value in Health. 2014;17:A341–2. Elsevier [cited 2016 Apr 21]. Available from: http://www.sciencedirect.com/science/article/pii/S1098301514026102Inoriza JM, Pérez M, Cols M, Sánchez I, Carreras M. Análisis de la población diabética de una comarca : perfil de morbilidad, utilización de recursos, complicaciones y control metabólico. Aten Primaria. 2016;45. Available from: http://www.sciencedirect.com/science/article/pii/S0212656713001340Vivas-Consuelo D, Usó-Talamantes R, Trillo-Mata JL, Caballer-Tarazona M, Barrachina-Martínez I, Buigues-Pastor L. Predictability of pharmaceutical spending in primary health services using Clinical Risk Groups. Health Policy. 2014;116:188–95. Available from: http://www.sciencedirect.com/science/article/pii/S0168851014000256Kho AN, Hayes MG, Rasmussen-Torvik L, Pacheco JA, Thompson WK, Armstrong LL, et al. Use of diverse electronic medical record systems to identify genetic risk for type 2 diabetes within a genome-wide association study. J Am Med Inform Assoc. 2016;19:212–8. [cited 2016 Feb 18]. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3277617&tool=pmcentrez&rendertype=abstractPrados-Torres A, Poblador-Plou B, Calderón-Larrañaga A, Gimeno-Feliu LA, González-Rubio F, Poncel-Falcó A, et al. Multimorbidity patterns in primary care: interactions among chronic diseases using factor analysis. PLoS One. 2012;7:e32190. Public Library of Science [cited 2016 Apr 21]. Available from: http://dx.doi.org/10.1371/journal.pone.0032190Islam MM, Valderas JM, Yen L, Dawda P, Jowsey T, McRae IS. Multimorbidity and comorbidity of chronic diseases among the senior Australians: prevalence and patterns. PLoS One. 2014;9:e83783. Public Library of Science [cited 2016 Mar 25]. Available from: http://dx.doi.org/10.1371/journal.pone.0083783Fortin M, Bravo G, Hudon C, Lapointe L, Dubois MF, Almirall J. Psychological distress and multimorbidity in primary care. Ann Fam Med. 2006;4:417–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17003141Nuttall M, van der Meulen J, Emberton M. Charlson scores based on ICD-10 administrative data were valid in assessing comorbidity in patients undergoing urological cancer surgery. J Clin Epidemiol. 2006;59:265–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16488357Klompas M, Eggleston E, McVetta J, Lazarus R, Li L, Platt R. Automated detection and classification of type 1 versus type 2 diabetes using electronic health record data. Diabetes Care. 2013;36:914–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23193215Alonso-Moran E, Orueta JF, Fraile Esteban JI, Arteagoitia Axpe JM, Luz Marques Gonzalez M, Toro Polanco N, et al. The prevalence of diabetes-related complications and multimorbidity in the population with type 2 diabetes mellitus in the Basque Country. BMC Public Health. 2014;14. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4197247/Pantalone KM, Hobbs TM, Wells BJ, Kong SX, Kattan MW, Bouchard J, et al. Clinical characteristics, complications, comorbidities and treatment patterns among patients with type 2 diabetes mellitus in a large integrated health system. BMJ open diabetes Res Care. 2015;3:e000093. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4513350&tool=pmcentrez&rendertype=abstractAlonso-Moran E, Satylganova A, Orueta JF, Nuno-Solinis R. Prevalence of depression in adults with type 2 diabetes in the Basque Country: relationship with glycaemic control and health care costs. BMC Public Health. 2014;14. Available from: http://bmcpublichealth.biomedcentral.com/articles/10.1186/1471-2458-14-769Kilzieh N, Rastam S, Maziak W, Ward KD. Comorbidity of depression with chronic diseases: a population-based study in Aleppo, Syria. Int J Psychiatry Med. 2008;38:169–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18724568Almawi W, Tamim H, Al-Sayed N, Arekat MR, Al-Khateeb GM, Baqer A, et al. Association of comorbid depression, anxiety, and stress disorders with Type 2 diabetes in Bahrain, a country with a very high prevalence of Type 2 diabetes. J Endocrinol Invest. 2008;31:1020–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19169060Giralt Muiña P, Gutiérrez Ávila G, Ballester Herrera MJ, Botella Romero F, Angulo Donado JJ. Prevalencia de diabetes y diabetes oculta en adultos de Castilla-La Mancha. TITLEREVISTA. 2011;137:484–90. Available from: http://zl.elsevier.es/es/revista/medicina-clinica-2/prevalencia-diabetes-diabetes-oculta-adultos-castilla-la-mancha-90028329-originales-2011Mata-Cases M, Roura-Olmeda P, Berengué-Iglesias M, Birulés-Pons M, Mundet-Tuduri X, Franch-Nadal J, et al. Fifteen years of continuous improvement of quality care of type 2 diabetes mellitus in primary care in Catalonia, Spain. Int J Clin Pract. 2012;66:289–98. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3584513&tool=pmcentrez&rendertype=abstractEgede LE, Gebregziabher M, Zhao Y, Dismuke CE, Walker RJ, Hunt KJ, et al. Differential Impact of Mental Health. 2015;21:535–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26295353Huber CA, Diem P, Schwenkglenks M, Rapold R, Reich O. Estimating the prevalence of comorbid conditions and their effect on health care costs in patients with diabetes mellitus in Switzerland. Diabetes Metab Syndr Obes. 2014;7:455–65. Dove Press [cited 2016 Aug 4]. Available from: https://www.dovepress.com/estimating-the-prevalence-of-comorbid-conditions-and-their-effect-on-h-peer-reviewed-article-DMS

    Genetic drivers of heterogeneity in type 2 diabetes pathophysiology.

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P < 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care
    corecore