49 research outputs found

    Common Variants at 9p21 and 8q22 Are Associated with Increased Susceptibility to Optic Nerve Degeneration in Glaucoma

    Get PDF
    Optic nerve degeneration caused by glaucoma is a leading cause of blindness worldwide. Patients affected by the normal-pressure form of glaucoma are more likely to harbor risk alleles for glaucoma-related optic nerve disease. We have performed a meta-analysis of two independent genome-wide association studies for primary open angle glaucoma (POAG) followed by a normal-pressure glaucoma (NPG, defined by intraocular pressure (IOP) less than 22 mmHg) subgroup analysis. The single-nucleotide polymorphisms that showed the most significant associations were tested for association with a second form of glaucoma, exfoliation-syndrome glaucoma. The overall meta-analysis of the GLAUGEN and NEIGHBOR dataset results (3,146 cases and 3,487 controls) identified significant associations between two loci and POAG: the CDKN2BAS region on 9p21 (rs2157719 [G], OR = 0.69 [95%CI 0.63–0.75], p = 1.86×10−18), and the SIX1/SIX6 region on chromosome 14q23 (rs10483727 [A], OR = 1.32 [95%CI 1.21–1.43], p = 3.87×10−11). In sub-group analysis two loci were significantly associated with NPG: 9p21 containing the CDKN2BAS gene (rs2157719 [G], OR = 0.58 [95% CI 0.50–0.67], p = 1.17×10−12) and a probable regulatory region on 8q22 (rs284489 [G], OR = 0.62 [95% CI 0.53–0.72], p = 8.88×10−10). Both NPG loci were also nominally associated with a second type of glaucoma, exfoliation syndrome glaucoma (rs2157719 [G], OR = 0.59 [95% CI 0.41–0.87], p = 0.004 and rs284489 [G], OR = 0.76 [95% CI 0.54–1.06], p = 0.021), suggesting that these loci might contribute more generally to optic nerve degeneration in glaucoma. Because both loci influence transforming growth factor beta (TGF-beta) signaling, we performed a genomic pathway analysis that showed an association between the TGF-beta pathway and NPG (permuted p = 0.009). These results suggest that neuro-protective therapies targeting TGF-beta signaling could be effective for multiple forms of glaucoma

    Paying for information: partial loads in central place foragers

    No full text
    11 pagesInternational audienceInformation about food sources can be crucial to the success of a foraging animal. We predict that this will influence foraging decisions by group-living foragers, which may sacrifice short-term foraging efficiency to collect information more frequently. This result emerges from a model of a central-place forager that can potentially receive information on newly available superior food sources at the central place. Such foragers are expected to return early from food sources, even with just partial loads, if information about the presence of sufficiently valuable food sources is likely to become available. Returning with an incomplete load implies that the forager is at that point not achieving the maximum possible food delivery rate. However, such partial loading can be more than compensated for by an earlier exploitation of a superior food source. Our model does not assume cooperative foraging and could thus be used to investigate this effect for any social central-place forager. We illustrate the approach using numerical calculations for honeybees and leafcutter ants, which do forage cooperatively. For these examples, however, our results indicate that reducing load confers minimal benefits in terms of receiving information. Moreover, the hypothesis that foragers reduce load to give information more quickly (rather than to receive it) fits empirical data from social insects better. Thus, we can conclude that in these two cases of social-insect foraging, efficient distribution of information by successful foragers may be more important than efficient collection of information by unsuccessful ones

    Scintigraphic Evaluation of the Osteoblastic Activity of Rabbit Tibial Defects After Hyaff11 Membrane Application

    Get PDF
    Background An unfavorable condition for bone healing is the presence of bone defects. Under such conditions, a material can play a role to cover fractured or defective bone. Technological advances now allow for the use of such material. Hyalonect® (Fidia Advanced Biopolymers SLR, Italy), a novel membrane comprising knitted fibers of esterified hyaluronan (HYAFF11) can be used to cover fractured or grafted bone and can also serve as a scaffold to keep osteoprogenitor cells in place. The aim of this study was to compare osteoblastic activity by the use of scintigraphic methods in defective rabbit tibias during early-phase bone healing with or without a hyaluronan-based mesh. Methods Two groups (A and B) of New Zealand albino rabbits were used; each group included 10 animals. Operations on all rabbits were performed under general anesthesia. We also resected 10-mm bone segments from each animal’s tibial diaphysis. After resection, tibias with defects were fixed using Kirschner wires. In group A, no hyaluronan-based mesh was used. In group B, tibial segmental defects were enclosed with a hyaluronan-based mesh. The rabbits were followed up for 4 weeks postoperatively, after which bone scintigraphic studies were performed on each animal to detect and compare osteoblastic activity. Results The mean count in the fracture side of the hyaluronan-based mesh group was significantly higher compared to that of the group A (p = 0.019). However, there was no significant difference between group B and control rabbits with respect to the mean count on the intact bone side (p = 0.437). The bone defect (fracture)/intact bone mean count ratio was significantly higher in group B compared to group A (p = 0.008). Conclusions A hyaluronan-based mesh plays a role in promoting osteoblastic activity. Hyalonect® is suitable for restoring tissue continuity whenever the periosteal membrane is structurally impaired or inadequate. Our results demonstrated that, during early-phase bone healing, osteoblastic activity was increased in bone defect sites when a hyaluronan-based mesh was also used. The most important aspect of this study concerns its scintigraphy-based design. This study is the first to use a scintigraphic method to demonstrate the effectiveness of hyaluronic acid-based material for bone healing.PubMedWoSScopu
    corecore