43 research outputs found

    Determination of the light curve of the Rosetta target asteroid (2867) Steins by the OSIRIS cameras onboard Rosetta

    Get PDF
    7 pp.-- Article published by EDP Sciences and available at http://www.aanda.org or http://dx.doi.org/10.1051/0004-6361:20066694.-- Table 2 is only available in electronic form at http://www.aanda.org.[Context] In 2004 asteroid (2867) Steins has been selected as a flyby target for the Rosetta mission. Determination of its spin period and the orientation of its rotation axis are essential for optimization of the flyby planning.[Aims] Measurement of the rotation period and light curve of asteroid (2867) Steins at a phase angle larger than achievable from ground based observations, providing a high quality data set to contribute to the determination of the orientation of the spin axis and of the pole direction.[Methods] On March 11, 2006, asteroid (2867) Steins was observed continuously for 24 h with the scientific camera system OSIRIS onboard Rosetta. The phase angle was 41.7 degrees, larger than the maximum phase angle of 30 degrees when Steins is observed from Earth. A total of 238 images, covering four rotation periods without interruption, were acquired.[Results] The light curve of (2867) Steins is double peaked with an amplitude of ≈0.23 mag. The rotation period is 6.052 ± 0.007 h. The continuous observations over four rotation periods exclude the possibility of period ambiguities. There is no indication of deviation from a principal axis rotation state. Assuming a slope parameter of G = 0.15, the absolute visual magnitude of Steins is 13.05 ± 0.03.The OSIRIS imaging system on board Rosetta is managed by the Max-Planck-Intitute for Solar System Research in Katlenburg-Lindau (Germany), thanks to an International collaboration between Germany, France, Italy, Spain, and Sweden. The support of the national funding agencies DLR, CNES, ASI, MEC, and SNSB is gratefully acknowledged. We acknowledge the work of the Rosetta Science Operations Centre at ESA/ESTEC and of the Rosetta Mission Operations Centre at ESA/ESOC who made these observations possible on short notation and operated the spacecraft. S.C.L. acknowledges support from the Leverhulme Trust. This research made use of JPL’s online ephemeris generator (HORIZONS).Peer reviewe

    Ultraviolet Spectroscopy of Asteroid (4) Vesta

    Get PDF
    We report a comprehensive review of the UV-visible spectrum and rotational lightcurve of Vesta combining new observations by Hubble Space Telescope and Swift Gamma-ray Burst Observatory with archival International Ultraviolet Explorer observations. The geometric albedos of Vesta from 220 nm to 953 nm are derived by carefully comparing these observations from various instruments at different times and observing geometries. Vesta has a rotationally averaged geometric albedo of 0.09 at 250 nm, 0.14 at 300 nm, 0.26 at 373 nm, 0.38 at 673 nm, and 0.30 at 950 nm. The linear spectral slope as measured between 240 and 320 nm in the ultraviolet displays a sharp minimum near a sub-Earth longitude of 20^{\circ}, and maximum in the eastern hemisphere. This is consistent with the longitudinal distribution of the spectral slope in the visible wavelength. The photometric uncertainty in the ultraviolet is ~20%, and in the visible wavelengths it is better than 10%. The amplitude of Vesta's rotational lightcurves is ~10% throughout the range of wavelengths we observed, but is smaller at 950 nm (~6%) near the 1-\mum band center. Contrary to earlier reports, we found no evidence for any difference between the phasing of the ultraviolet and visible/near-infrared lightcurves with respect to sub-Earth longitude. Vesta's average spectrum between 220 and 950 nm can well be described by measured reflectance spectra of fine particle howardite-like materials of basaltic achondrite meteorites. Combining this with the in-phase behavior of the ultraviolet, visible, and near-infrared lightcurves, and the spectral slopes with respect to the rotational phase, we conclude that there is no global ultraviolet/visible reversal on Vesta. Consequently, this implies a lack of global space weathering on Vesta, as previously inferred from visible-near-infrared data.Comment: 44 pages, 5 figures, 1 tabl

    Cometary diversity and cometary families

    Full text link
    Comets are classified from their orbital characteristics into two separate classes: nearly-isotropic, mainly long-period comets and ecliptic, short-period comets. Members from the former class are coming from the Oort cloud. Those of the latter class were first believed to have migrated from the Kuiper belt where they could have been accreted in situ, but recent orbital evolution simulations showed that they rather come from the trans-Neptunian scattered disc. These two reservoirs are not where the comets formed: they were expelled from the inner Solar System following interaction with the giant planets. If comets formed at different places in the Solar System, one would expect they show different chemical and physical properties. In the present paper, I review which differences are effectively observed: chemical and isotopic compositions, spin temperatures, dust particle properties, nucleus properties... and investigate whether these differences are correlated with the different dynamical classes. The difficulty of such a study is that long-period, nearly-isotropic comets from the Oort cloud are better known, from Earth-based observations, than the weak nearly-isotropic, short-period comets. On the other hand, only the latter are easily accessed by space missions.Comment: Proceedings of the XVIIIemes Rencontres de Blois: Planetary Science: Challenges and Discoveries, 28th May - 2nd June 2006, Blois, Franc

    Rosetta-Alice Observations of Exospheric Hydrogen and Oxygen on Mars

    Full text link
    The European Space Agency's Rosetta spacecraft, en route to a 2014 encounter with comet 67P/Churyumov-Gerasimenko, made a gravity assist swing-by of Mars on 25 February 2007, closest approach being at 01:54UT. The Alice instrument on board Rosetta, a lightweight far-ultraviolet imaging spectrograph optimized for in situ cometary spectroscopy in the 750-2000 A spectral band, was used to study the daytime Mars upper atmosphere including emissions from exospheric hydrogen and oxygen. Offset pointing, obtained five hours before closest approach, enabled us to detect and map the HI Lyman-alpha and Lyman-beta emissions from exospheric hydrogen out beyond 30,000 km from the planet's center. These data are fit with a Chamberlain exospheric model from which we derive the hydrogen density at the 200 km exobase and the H escape flux. The results are comparable to those found from the the Ultraviolet Spectrometer experiment on the Mariner 6 and 7 fly-bys of Mars in 1969. Atomic oxygen emission at 1304 A is detected at altitudes of 400 to 1000 km above the limb during limb scans shortly after closest approach. However, the derived oxygen scale height is not consistent with recent models of oxygen escape based on the production of suprathermal oxygen atoms by the dissociative recombination of O2+.Comment: 17 pages, 8 figures, accepted for publication in Icaru

    The Main Belt Comets and ice in the Solar System

    Get PDF
    We review the evidence for buried ice in the asteroid belt; specifically the questions around the so-called Main Belt Comets (MBCs). We summarise the evidence for water throughout the Solar System, and describe the various methods for detecting it, including remote sensing from ultraviolet to radio wavelengths. We review progress in the first decade of study of MBCs, including observations, modelling of ice survival, and discussion on their origins. We then look at which methods will likely be most effective for further progress, including the key challenge of direct detection of (escaping) water in these bodies

    On the origin and evolution of the material in 67P/Churyumov-Gerasimenko

    Get PDF
    International audiencePrimitive objects like comets hold important information on the material that formed our solar system. Several comets have been visited by spacecraft and many more have been observed through Earth- and space-based telescopes. Still our understanding remains limited. Molecular abundances in comets have been shown to be similar to interstellar ices and thus indicate that common processes and conditions were involved in their formation. The samples returned by the Stardust mission to comet Wild 2 showed that the bulk refractory material was processed by high temperatures in the vicinity of the early sun. The recent Rosetta mission acquired a wealth of new data on the composition of comet 67P/Churyumov-Gerasimenko (hereafter 67P/C-G) and complemented earlier observations of other comets. The isotopic, elemental, and molecular abundances of the volatile, semi-volatile, and refractory phases brought many new insights into the origin and processing of the incorporated material. The emerging picture after Rosetta is that at least part of the volatile material was formed before the solar system and that cometary nuclei agglomerated over a wide range of heliocentric distances, different from where they are found today. Deviations from bulk solar system abundances indicate that the material was not fully homogenized at the location of comet formation, despite the radial mixing implied by the Stardust results. Post-formation evolution of the material might play an important role, which further complicates the picture. This paper discusses these major findings of the Rosetta mission with respect to the origin of the material and puts them in the context of what we know from other comets and solar system objects

    Pluto: A Planet or a Trans-Neptunian Object?

    No full text
    Abstract. The purposes of classification and taxonomy are reviewed. Using examples from fields ranging from paleontology to planetology,I argue that non-exclusive classifications,which allow Pluto to be considered both a planet and a TNO,provide the most desirable approach to progress in our science. 1

    Cometary Science: The Present and Future

    No full text
    The preceding chapters in this book have provided a comprehensive study of our present knowledge of comets, from the interstellar medium, through formation of the solar system and the present day, to the death of comets. This chapter will make no attempt to summarize the previous chapters. Rather, based on the material in the previous chapters, this chapter will ask about the high-level state of our knowledge in major areas. Is our knowledge mostly speculation based on fragmentary data? Is our knowledge mature in terms of data but immature in interpretation? Is the entire area mature with a full understanding of the implications for the larger fields of science? A natural outgrowth of this approach is to ask where we might be a decade into the future. What would we like to know? What are we likely to know? Where might the big surprises lie? No references (except one non-cometary reference) are given in this chapter because the topics are all covered in more detail elsewhere in this book and those chapters contain a far more appropriate set of primary references than could be provided here. Some of the areas, notably dynamics, have also been surveyed at a higher leve
    corecore