333 research outputs found

    Thermomechanical properties and shape-memory behavior of bisphenol a diacrylate-based shape-memory polymers

    Get PDF
    A series of acrylate-based shape-memory materials are synthesized from bisphenol A diacrylate monomers as crosslinking agents. Networks are synthesized by keeping constant the content of bisphenol A-based crosslinking agent and systematically varying the content ratio of different monofunctional chain builder monomers. The implications of the structure of bisphenol A-based monomers and the chemical structure and content of monofunctional monomers on thermomechanical properties are discussed. Thermomechanical properties are analyzed using dynamic mechanical analyses and mechanical properties are studied at room temperature and at the onset of the glass transition temperature. Shape-memory performances under isothermal and transient temperature conditions are also carried out. Tensile tests show excellent values of stress at break up to 45 and 15 MPa at room and high temperature, respectively. The measurements show excellent shape recovery and shape fixity ratios, ˜95% and 97%, respectively. These materials also show very high recovery velocities under transient temperature conditions, up to 24% min-1, and very short recovery times, up to 1.5 s, under isothermal conditions in a water bath. The results confirm that networks synthesized from bisphenol A crosslinkers are promising shape-memory materials.Postprint (author's final draft

    Structure model index does not measure rods and plates in trabecular bone

    Get PDF
    Structure model index (SMI) is widely used to measure rods and plates in trabecular bone. It exploits the change in surface curvature that occurs as a structure varies from spherical (SMI = 4), to cylindrical (SMI = 3) to planar (SMI = 0). The most important assumption underlying SMI is that the entire bone surface is convex and that the curvature differential is positive at all points on the surface. The intricate connections within the trabecular continuum suggest that a high proportion of the surface could be concave, violating the assumption of convexity and producing regions of negative differential. We implemented SMI in the BoneJ plugin and included the ability to measure the amounts of surface that increased or decreased in area after surface mesh dilation, and the ability to visualize concave and convex regions. We measured SMI and its positive (SMI+) and negative (SMI-) components, bone volume fraction (BV/TV), the fraction of the surface that is concave (CF), and mean ellipsoid factor (EF) in trabecular bone using 38 X-ray microtomography (XMT) images from a rat ovariectomy model of sex steroid rescue of bone loss, and 169 XMT images from a broad selection of 87 species' femora (mammals, birds, and a crocodile). We simulated bone resorption by eroding an image of elephant trabeculae and recording SMI and BV/TV at each erosion step. Up to 70%, and rarely less than 20%, of the trabecular surface is concave (CF 0.155 – 0.700). SMI is unavoidably influenced by aberrations from SMI-, which is strongly correlated with BV/TV and CF. The plate-to-rod transition in bone loss is an erroneous observation resulting from SMI's close and artefactual relationship with BV/TV. SMI cannot discern between the distinctive trabecular geometries typical of mammalian and avian bone, whereas EF clearly detects birds' more plate-like trabeculae. EF is free from confounding relationships with BV/TV and CF. SMI results reported in the literature should be treated with suspicion. We propose that EF should be used instead of SMI for measurements of rods and plates in trabecular bone

    Liquid crystal elastomer shell actuators with negative order parameter

    Get PDF
    Liquid crystals (LCs) are nonsolids with long-range orientational order, described by a scalar order parameter ⟨P2⟩=1/2⟨3cos2β−1⟩. Despite the vast set of existing LC materials, one-third of the order parameter value range, −1/2< 〈P2〉 < 0, has until now been inaccessible. Here, we present the first material with negative LC order parameter in its ground state, in the form of elastomeric shells. The optical and actuation characteristics are opposite to those of conventional LC elastomers (LCEs). This novel class of anti-ordered elastomers gives access to the previously secluded range of liquid crystallinity with 〈P2〉 < 0, providing new challenges for soft matter physics and adding a complementary type of LCE actuator that is attractive for applications in, e.g., soft robotic

    Soft elasticity optimises dissipation in 3D-printed liquid crystal elastomers

    Get PDF
    Soft-elasticity in monodomain liquid crystal elastomers (LCEs) is promising for impact-absorbing applications where strain energy is ideally absorbed at constant stress. Conventionally, compressive and impact studies on LCEs have not been performed given the notorious difficulty synthesizing sufficiently large monodomain devices. Here, we use direct-ink writing 3D printing to fabricate bulk (>cm3) monodomain LCE devices and study their compressive soft-elasticity over 8 decades of strain rate. At quasi-static rates, the monodomain soft-elastic LCE dissipated 45% of strain energy while comparator materials dissipated less than 20%. At strain rates up to 3000 s−1, our soft-elastic monodomain LCE consistently performed closest to an ideal-impact absorber. Drop testing reveals soft-elasticity as a likely mechanism for effectively reducing the severity of impacts – with soft elastic LCEs offering a Gadd Severity Index 40% lower than a comparable isotropic elastomer. Lastly, we demonstrate tailoring deformation and buckling behavior in monodomain LCEs via the printed director orientation

    The effect of organoclay addition on the properties of an acrylate based, thermally activated shape memory polymer

    Get PDF
    Shape Memory Polymers (SMPs) exhibit the intriguing ability to change back from an intermediate, deformed shape back to their original, permanent shape. In this contribution a systematic series of t-butylacrylate-co-poly(ethyleneglycol) dimethacrylate (tBA-co-PEGDMA) polymers have been synthesised and characterised prior to incorporation of organoclay. Increasing the poly(ethyleneglycol) dimethacrylate (PEGDMA) content in increments of 10% increased the storage modulus from 2005 to 2250 MPa, reduced the glass transition temperature from + 41 to − 26 °C and reduced the intensity of the associated tan δ peak. The tBA-co-PEGDMA crosslinked networks displayed useful shape memory properties up to PEGDMA contents of 40%. Above this PEGDMA percentage the materials were prone to fracture and too brittle for a realistic assessment of their shape memory capability. The system containing 90% t-butylacrylate (tBA) and 10% PEGDMA was selected as the host matrix to investigate how the incorporation of 1 to 5 mass% of a benzyl tallow dimethylammonium-exchanged bentonite (BTDB) influenced the shape memory properties. X-ray diffraction data confirmed that BTDB formed a microcomposite in the selected matrix and exerted no influence on the storage modulus, rubbery modulus, glass transition temperature, Tg, or the shape or intensity of the tan δ peak of the host matrix. Therefore, it was anticipated that the presence of BTDB would have no effect, positive or negative, nor on the shape memory properties of the host matrix. However, it was found that the incorporation of clay, especially at the 1 mass% level, significantly accelerated the speed, compared with the clay-free SMP, at which the microcomposite returned to the original, permanent shape. This accelerated return to the permanent shape was also observed when the microcomposite was coated onto a 100 μm PET film

    Fabrication and in vitro deployment of a laser-activated shape memory polymer vascular stent

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vascular stents are small tubular scaffolds used in the treatment of arterial stenosis (narrowing of the vessel). Most vascular stents are metallic and are deployed either by balloon expansion or by self-expansion. A shape memory polymer (SMP) stent may enhance flexibility, compliance, and drug elution compared to its current metallic counterparts. The purpose of this study was to describe the fabrication of a laser-activated SMP stent and demonstrate photothermal expansion of the stent in an <it>in vitro </it>artery model.</p> <p>Methods</p> <p>A novel SMP stent was fabricated from thermoplastic polyurethane. A solid SMP tube formed by dip coating a stainless steel pin was laser-etched to create the mesh pattern of the finished stent. The stent was crimped over a fiber-optic cylindrical light diffuser coupled to an infrared diode laser. Photothermal actuation of the stent was performed in a water-filled mock artery.</p> <p>Results</p> <p>At a physiological flow rate, the stent did not fully expand at the maximum laser power (8.6 W) due to convective cooling. However, under zero flow, simulating the technique of endovascular flow occlusion, complete laser actuation was achieved in the mock artery at a laser power of ~8 W.</p> <p>Conclusion</p> <p>We have shown the design and fabrication of an SMP stent and a means of light delivery for photothermal actuation. Though further studies are required to optimize the device and assess thermal tissue damage, photothermal actuation of the SMP stent was demonstrated.</p

    Multimaterial 4D Printing with Tailorable Shape Memory Polymers

    Get PDF
    We present a new 4D printing approach that can create high resolution (up to a few microns), multimaterial shape memory polymer (SMP) architectures. The approach is based on high resolution projection microstereolithography (PμSL) and uses a family of photo-curable methacrylate based copolymer networks. We designed the constituents and compositions to exhibit desired thermomechanical behavior (including rubbery modulus, glass transition temperature and failure strain which is more than 300% and larger than any existing printable materials) to enable controlled shape memory behavior. We used a high resolution, high contrast digital micro display to ensure high resolution of photo-curing methacrylate based SMPs that requires higher exposure energy than more common acrylate based polymers. An automated material exchange process enables the manufacture of 3D composite architectures from multiple photo-curable SMPs. In order to understand the behavior of the 3D composite microarchitectures, we carry out high fidelity computational simulations of their complex nonlinear, time-dependent behavior and study important design considerations including local deformation, shape fixity and free recovery rate. Simulations are in good agreement with experiments for a series of single and multimaterial components and can be used to facilitate the design of SMP 3D structures
    • …
    corecore