53 research outputs found

    The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere

    No full text
    International audienceThe new Modular Earth Submodel System (MESSy) describes atmospheric chemistry and meteorological processes in a modular framework, following strict coding standards. It has been coupled to the ECHAM5 general circulation model, which has been slightly modified for this purpose. A 90-layer model version up to 0.01 hPa was used at T42 resolution (~2.8 latitude and longitude) to simulate the lower and middle atmosphere. The model meteorology has been tested to check the influence of the changes to ECHAM5 and the radiation interactions with the new representation of atmospheric composition. A Newtonian relaxation technique was applied in the tropospheric part of the domain to weakly nudge the model towards the analysed meteorology during the period 1998?2005. It is shown that the tropospheric wave forcing of the stratosphere in the model suffices to reproduce the Quasi-Biennial Oscillation and major stratospheric warming events leading e.g. to the vortex split over Antarctica in 2002. Characteristic features such as dehydration and denitrification caused by the sedimentation of polar stratospheric cloud particles and ozone depletion during winter and spring are simulated accurately, although ozone loss in the lower polar stratosphere is slightly underestimated. The model realistically simulates stratosphere-troposphere exchange processes as indicated by comparisons with satellite and in situ measurements. The evaluation of tropospheric chemistry presented here focuses on the distributions of ozone, hydroxyl radicals, carbon monoxide and reactive nitrogen compounds. In spite of minor shortcomings, mostly related to the relatively coarse T42 resolution and the neglect of interannual changes in biomass burning emissions, the main characteristics of the trace gas distributions are generally reproduced well. The MESSy submodels and the ECHAM5/MESSy1 model output are available through the internet on request

    Observational uncertainty and regional climate model evaluation: A pan-European perspective

    Get PDF
    The influence of uncertainties in gridded observational reference data on regional climate model (RCM) evaluation is quantified on a pan-European scale. Three different reference data sets are considered: the coarse-resolved E-OBS data set, a compilation of regional high-resolution gridded products (HR) and the European-scale MESAN reanalysis. Five high-resolution ERA-Interim-driven RCM experiments of the EURO-CORDEX initiative are evaluated against each of these references over eight European sub-regions and considering a range of performance metrics for mean daily temperature and daily precipitation. The spatial scale of the evaluation is 0.22°, i.e. the grid spacing of the coarsest data set in the exercise (E-OBS). While the three reference grids agree on the overall mean climatology, differences can be pronounced over individual regions. These differences partly translate into RCM evaluation uncertainty. For most cases observational uncertainty is smaller than RCM uncertainty. Nevertheless, for individual sub-regions and performance metrics observational uncertainty can dominate. This is especially true for precipitation and for metrics targeting the wet-day frequency, the pattern correlation and the distributional similarity. In some cases the spatially averaged mean bias can also be considerably affected. An illustrative ranking exercise highlights the overall effect of observational uncertainty on RCM ranking. Over individual sub-domains, the choice of a specific reference can modify RCM ranks by up to four levels (out of five RCMs). For most cases, however, RCM ranks are stable irrespective of the reference. These results provide a twofold picture: model uncertainty dominates for most regions and for most performance metrics considered, and observational uncertainty plays a minor role. For individual cases, however, observational uncertainty can be pronounced and needs to be definitely taken into account. Results can, to some extent, also depend on the treatment of precipitation undercatch in the observational reference.The present work has been carried out as part of the EU-COST Action VALUE (Validating and Integrating Downscaling Methods for Climate Change Research; ES1102). The authors gratefully acknowledge the providers of RCM and observational data. For the high-resolution national/regional grids these are the University of Cantabria (SP), the Institute of Meteorology and Water Management – National Research Institute (PO), Météo-France/CERFACS (FR), The Swedish Meteorological and Hydrological Institute (SE), Deutscher Wetterdienst (GE), the Hungarian Meteorological Service (CA), the Norwegian Meteorological Institute (NO) and Federal Office of Meteorology and Climatology MeteoSwiss (CH). Furthermore, we acknowledge the E-OBS dataset from the EU-FP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data providers in the ECA&D project (http://eca.knmi.nl). The MESAN data set was provided by the Swedish Meteorological and Hydrological Institute. All analysis were performed on the computing infrastructure of the Swiss National Supercomputing Centre CSCS. They furthermore thank the climate modelling groups of the EURO-CORDEX initiative for producing and making available their model output. The contribution of Olle Räty was partly funded by the Vilho, Yrjö and Kalle Väisälä Foundation of the Finnish Academy of Science and Letters

    The atmospheric chemistry general circultation model ECHAM5/MESSy1: Consistent simulation of ozone from the surface to the mesosphere

    Get PDF
    The new Modular Earth Submodel System (MESSy) describes atmospheric chemistry and meteorological processes in a modular framework, following strict coding standards. It has been coupled to the ECHAM5 general circulation model, which has been slightly modified for this purpose. A 90-layer model setup up to 0.01 hPa was used at spectral T42 resolution to simulate the lower and middle atmosphere. With the high vertical resolution the model simulates the Quasi-Biennial Oscillation. The model meteorology has been tested to check the influence of the changes to ECHAM5 and the radiation interactions with the new representation of atmospheric composition. In the simulations presented here a Newtonian relaxation technique was applied in the tropospheric part of the domain to weakly nudge the model towards the analysed meteorology during the period 1998–2005. This allows an efficient and direct evaluation with satellite and in-situ data. It is shown that the tropospheric wave forcing of the stratosphere in the model suffices to reproduce major stratospheric warming events leading e.g. to the vortex split over Antarctica in 2002. Characteristic features such as dehydration and denitrification caused by the sedimentation of polar stratospheric cloud particles and ozone depletion during winter and spring are simulated well, although ozone loss in the lower polar stratosphere is slightly underestimated. The model realistically simulates stratosphere-troposphere exchange processes as indicated by comparisons with satellite and in situ measurements. The evaluation of tropospheric chemistry presented here focuses on the distributions of ozone, hydroxyl radicals, carbon monoxide and reactive nitrogen compounds. In spite of minor shortcomings, mostly related to the relatively coarse T42 resolution and the neglect of inter-annual changes in biomass burning emissions, the main characteristics of the trace gas distributions are generally reproduced well. The MESSy submodels and the ECHAM5/MESSy1 model output are available through the internet on reques

    Heat wave characteristics in the eastern Mediterranean and Middle East using extreme value theory

    No full text
    Heat waves in the eastern Mediterranean and Middle East can have large socioeconomic impacts. We apply a newly developed statistical framework, based on the extreme value theory, to study the characteristics of heat waves in the region during the period 1973-2010 using data from 15 measurement stations across the region. The analysis shows increasing trends in the highest daytime temperatures in the Persian Gulf region in summer. Increasing trends in the number of heat waves are found at all stations, whereas the maximum temperature during heat waves is found unchanged, implying no change in their intensity. Furthermore, no significant trends in the heat wave duration are observed. Return levels are calculated for the individual hot days and found to be very high in the Persian Gulf region

    Strongly increasing heat extremes in the Middle East and North Africa (MENA) in the 21st century

    No full text
    The ensemble results of CMIP5 climate models that applied the RCP4.5 and RCP8.5 scenarios have been used to investigate climate change and temperature extremes in the Middle East and North Africa (MENA). Uncertainty evaluation of climate projections indicates good model agreement for temperature but much less for precipitation. Results imply that climate warming in the MENA is strongest in summer while elsewhere it is typically stronger in winter. The summertime warming extends the thermal low at the surface from South Asia across the Middle East over North Africa, as the hot desert climate intensifies and becomes more extreme. Observations and model calculations of the recent past consistently show increasing heat extremes, which are projected to accelerate in future. The number of warm days and nights may increase sharply. On average in the MENA, the maximum temperature during the hottest days in the recent past was about 43 A degrees C, which could increase to about 46 A degrees C by the middle of the century and reach almost 50 A degrees C by the end of the century, the latter according to the RCP8.5 (business-as-usual) scenario. This will have important consequences for human health and society

    Present and future projections of habitat suitability of the Asian tiger mosquito, a vector of viral pathogens, from global climate simulation

    No full text
    Climate change can influence the transmission of vector-borne diseases (VBDs) through altering the habitat suitability of insect vectors. Here we present global climate model simulations and evaluate the associated uncertainties in view of the main meteorological factors that may affect the distribution of the Asian tiger mosquito (Aedes albopictus), which can transmit pathogens that cause chikungunya, dengue fever, yellow fever and various encephalitides. Using a general circulation model at 50 km horizontal resolution to simulate mosquito survival variables including temperature, precipitation and relative humidity, we present both global and regional projections of the habitat suitability up to the middle of the twenty-first century. The model resolution of 50 km allows evaluation against previous projections for Europe and provides a basis for comparative analyses with other regions. Model uncertainties and performance are addressed in light of the recent CMIP5 ensemble climate model simulations for the RCP8.5 concentration pathway and using meteorological re-analysis data (ERA-Interim/ECMWF) for the recent past. Uncertainty ranges associated with the thresholds of meteorological variables that may affect the distribution of Ae. albopictus are diagnosed using fuzzy-logic methodology, notably to assess the influence of selected meteorological criteria and combinations of criteria that influence mosquito habitat suitability. From the climate projections for 2050, and adopting a habitat suitability index larger than 70%, we estimate that approximately 2.4 billion individuals in a land area of nearly 20 million km(2) will potentially be exposed to Ae. albopictus. The synthesis of fuzzy-logic based on mosquito biology and climate change analysis provides new insights into the regional and global spreading of VBDs to support disease control and policy making
    • …
    corecore