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Abstract

This article presents a modified Omega-K algorithm for circular trajectory scanning synthetic aperture radar
(CTSSAR) imaging. Due to the curvature of circular trajectory, it is difficult to have access to the two-dimensional
frequency spectrum for CTSSAR via the principle of stationary phase (POSP), as conventional SAR imaging methods
RD and CS. Herein, the analytic point target spectrum is first derived by series reversion and the POSP, based on
which a modified Omega-K algorithm is developed to focus data accurately. The accuracy can be controlled by
keeping enough terms in the two series expansions so that a well-focused image can be achieved with a proper
range approximation. After detailed analyses and experiments, the fourth-order approximation is proved to be the
best choice. Furthermore, the computational efficiency is evaluated by comparing the given method with the back
projection algorithm and other methods with different approximated orders. The proposed algorithm is verified to
be the best one in terms of computational burden. A well-focused image is obtained by simulations, validating the
feasibility of the proposed algorithm.

Keywords: Circular trajectory scanning (CTS) synthetic aperture radar (SAR) (CTSSAR), Series reversion, Omega-K
algorithm
1. Introduction
Due to its capability of working day/night and all
weather conditions, synthetic aperture radar (SAR) has
widely been applied to the military and civilian practical
uses. The traditional SAR system often operates along a
straight path at a certain altitude with respect to the
ground plane [1-4]. In recent years, the curved path
SAR has attracted more and more attention of many re-
searchers. An imaging mode called circular SAR (CSAR),
whose radar system moves along a circular trajectory,
gradually became one of the hotspots in the field of
radar signal processing [5]. In CSAR imaging mode, the
sensor steers its antenna beam to illuminate a certain
terrain patch, like “circular spotlight” mode to some ex-
tent. CSAR owns many advantages over the conven-
tional one that it has the capability to achieve sub-
wavelength resolution in the ground plane due to its
aperture of 360°. What is more, the multi-aspect
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observation of CSAR provides the information of the in-
terested target from different azimuth directions, making
it possible to realize a 3D reconstruction [6-14]. Al-
though CSAR owns so many advantages, the imaging
area is relatively small. Usually, both the height and the
diameter of the imaging area in the ground plane are
several hundred meters [15]. Therefore, it is suitable for
the high-resolution imaging of an interested area.
A new wide area circular trajectory scanning SAR

(CTSSAR) imaging mode has raised the interests of a
growing numbers of researchers [16]. In this mode, the
platform moves along a circular path at a certain altitude
with its antenna beam pointing fixed perpendicular to
the flight velocity away from the center of the circular
trajectory, the result is a moving antenna footprint that
sweeps along an annular terrain. Just like the spotlight
SAR and CSAR, the only thing differs CTSSAR from the
conventional stripmap is the shape of the track. Hence,
we prefer to call CTSSAR as ‘circular stripmap’ similarly.
Although certain sacrifices in azimuth resolution may
occur, CTSSAR can possess a larger imaging area than
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that of the traditional stripmap mode for its higher
scanning speed in azimuth, so it is more suitable for fast
wide area imaging.
Due to the trajectory curvature of CTSSAR, there are

trigonometric functions under the radical sign in the
target’s range function. The accurate analytical expres-
sion of the 2D spectrum is not achievable by adopting
conventional principle of stationary phase, which becomes
an obstacle in the way of designing a fast frequency-
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Figure 1 Imaging geometry of the CTSSAR.
domain-based algorithms for CTSSAR imaging. Thus,
Sun et al. [16] employ a quadratic approximation to the
range function in its deduction of the spectrum to design
an imaging method. In the case that the synthetic aperture
is relatively short and the azimuth resolution is low, the
impact of the curved trajectory can be neglected, and sat-
isfactory results can be reached using this method. Never-
theless, the quadratic approximation method ignores the
high-order range terms. Under the condition that the
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integration time is long and the azimuth resolution is high,
the range errors introduced by this approximation will be
large enough to defocus the image. The back projection
(BP) algorithm shown in [10] is a classical time-domain
algorithm, which can get rid of the problem of spectrum
derivation in the frequency-domain-based algorithms and
be implemented easily with arbitrary geometries. But the
disadvantage is that each pixel must be compensated
individually, leading to a heavy computational burden.
In order to obtain a more applicable approach to focus

CTSSAR data, a novel imaging algorithm for CTSSAR is
proposed based on the method of series reversion
(MSR). The MSR is a method using the Doppler series
expansion coefficients to obtain the coefficients of the
stationary phase by reversion [17,18]. The accuracy of
the spectrum is controlled by keeping enough terms in
the two series expansions. Moreover, the corresponding
modified Omega-K algorithm is established based on the
derived 2D spectrum.
In this article, the imaging geometry model is analyzed

first and the involved problem is discussed as well. To
obtain the 2D spectrum based on MSR, the range function
is kept up to the fourth-order. Thus, a new modified
Omega-K algorithm tailored for CTSSAR over a circular
path is developed and the detailed flowchart is given.
Finally, the algorithm is tested with satisfying results by
simulations for point targets in different range. Imple-
mentation aspects, including resolutions, computational
complexity, and the sensitivity to motion errors, are also
assessed in this article.

2. Signal model for CTSSAR
The imaging geometry for CTSSAR is shown in Figure 1.
The radar platform moves along a circular path of radius
ra with height Hc on a plane parallel to the ground plane.
As the radar moves, its beam is in the plane perpendicular
to the flight velocity all the time. When the radar platform
moves around a whole circle centered at the origin point
O of the spatial coordinate, the beam-illuminating scene
will be an annular area with inner radius OB and outer
radius OC. The coordinate of radar platform A is denoted
by (ra cos θ, ra sin θ, Hc), where the aspect angle is θ.
Assume that there is an arbitrary point target P located at
(rp cos θp, rp sin θp, 0). For simplicity of the following
derivation, let us define that the slow time is zero when
θ = θp, namely, the beam center crossing time. The angle
velocity is denoted by ω, and the slow time is represented
by η. So, we have θ = θp + ωη. Thus, the instantaneous
range R(η) between the radar and the target P can be
obtained based on the law of cosines as shown in the
following expressions.

Hctanθr ¼ rp � ra ð1Þ
R ηð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

c þ r2p þ r2a � 2rarpcos
q

θ � θp
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

c þ r2p þ r2a � 2rarpcosωη
q ð2Þ

Defining Rcen ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

c þ rp � ra
� �2q

, we perform Taylor

expansion to the instantaneous range neglecting the
terms whose order are higher than the fourth order. The
expression can be written as

R ηð Þ ¼ Rcen þ k1ηþ k2η
2 þ k3η

3 þ k4η
4 þ K ð3Þ

where

k1 ¼ 0; k2 ¼ rarpω2

2Rcen
; k3 ¼ 0; k4

¼ �ω4rarp
24Rcen

� ω4r2ar
2
p

8R3
cen

ð4Þ

Assume that the transmitting radar signal is linear
frequency modulation signal, the pulse width is Tp, and
the rate of frequency modulation is γ. The echo from P
can be presented by

sr t; ηð Þ ¼ σpar t � 2R ηð Þ
c

� �
aa ηð Þ:exp jπγ t � 2R ηð Þ

c

� �2( )
:exp

� �j
4π
λ
R ηð Þ

� �
;

ð5Þ
where σp is the coefficient of reflectivity, ar( • ) and aa( • )
are the range envelope and azimuth envelope, respectively,
c is the speed of light, and λ is the wavelength according
to the center frequency.
Now, convert the echo signal shown in (5) to the range

frequency azimuth time domain,

S0 fτ; ηð Þ ¼ σpAr fτð Þaa ηð Þ:exp �j
4π fc þ fτð ÞR ηð Þ

c

� �
:exp

� �j
πf 2τ
γ

� �
ð6Þ

where fc is the carrier frequency, fτ is the range frequency,
and Ar(fτ) represents the envelope of the range frequency.
Now let us try to figure out the 2D spectrum using the
stationary phase method as follow, first azimuth FFT is
performed to (6), yielding

S2 fτ; fη
� � ¼ Z

þ1

�1
S0 fτ; ηð Þexp �j2πfηη

� �
dη

¼
Zþ1

�1
σpAr fτð Þaa ηð Þ:exp θ ηð Þf gdη ð7Þ
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The phase in the Fourier integral is

θ ηð Þ ¼ � 4π fc þ fτð ÞR ηð Þ
c

� πf 2τ
γ

� 2πfηη ð8Þ

Then operate on the derivatives of θ(η) with respect to
the components of η,

dθ ηð Þ
dη

¼ � 4π fc þ fτð Þ
c

ωrarpsinωηffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2a þ H2

c þ r2p � 2rarpcosωη
q

� 2πfη

ð9Þ
Let it be zero, yielding

fη ¼ � 2 fc þ fτð Þωrarpsinωη
c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2a þ H2

c þ r2p � 2rarpcosωη
q ð10Þ

From (9), it can be noticed that there are trigonometric
functions in both numerator and denominator of the azi-
muth Doppler frequency, which will make the deduction
of η by (9) very hard to carry out and further put a huge
obstacle in the way of deriving the accurate 2D spectrum.
This problem is caused by the curvature of the circular
trajectory in CTSSAR. Thus, enough approximation is
required to derive the 2D frequency spectrum and ensure
a satisfied focusing result. Sun et al. [16] proposed a quad-
ratic approximation method to make the spectrum expres-
sion similar to that of the traditional straight line stripmap
mode. This approach ignores the curvature of the circular
trajectory and the parabolic approximation is introduced,
making the spectrum derivation relatively easy to imple-
ment. However, the precision of the obtained spectrum is
relatively lower. In case of low-resolution and short inte-
gration time, i.e., when the impact of the curvature of the
motion trajectory to the range variation can be neglected,
the flight path for the target point can be regarded as
straight line approximately. Thus, the method in [16] is
suitable under this situation. Nevertheless, if the integra-
tion time is relatively long and the required azimuth
resolution is high, the image might show significant deg-
radation by adopting the original quadratic approximation
method for its neglecting of the high-order terms. So, it
is necessary to find a new spectrum deducing method
for CTSSAR.

3. 2D spectrum and imaging algorithm
3.1. The deduction of the 2D spectrum based on MSR
From the above analysis, it is obvious that due to the
complicated range expression in the CTSSAR where the
simple quadratic range equation does not hold, the sta-
tionary phase point is difficult to approach and the 2D
spectrum is hard to obtain. Thus, MSR is adopted to
deduce the 2D spectrum, and the stationary phase
point’s series expansion coefficients with respect to
azimuth time will be estimated by reversing the coeffi-
cients in the Doppler spectrum, and the high accuracy
2D spectrum will be obtained. In the procedure of
deduction, the accuracy of the deduced spectrum can be
controlled by choosing an approximating order in the
expansion, which will be discussed in detail in Section 4.
In addition, the effective algorithm for CTSSAR will be
designed based on the spectrum.
As for (9), let the derivative be zero [16], and the Doppler

frequency can be written as follows:

� c
fc þ fτ

� �
fη ¼ 2k2ηþ 3k3η

2 þ 4k4η
3 þ L ð11Þ

Using MSR, we can get the azimuth time in the form
of Doppler frequency expansion, i.e., the expression of
the stationary phase point which is presented as follows:

η fη
� � ¼ A1 � c

fc þ fτ
fη

� �
þ A2 � c

fc þ fτ
fη

� �2

þ A3 � c
fc þ fτ

fη

� �3

þ L ð12Þ

where

A1 ¼ 1
2k2

¼ Rcen

ω2rarp
;A2 ¼ 0;A3

¼ �1

2k2ð Þ5
:2k2:4; k4 ¼ R3

cen

6ω4r3ar
3
p
þ Rcen

2ω4r2ar
2
p

ð13Þ

According to (6) and (12), it is easy to get the following
equation

SA fτ; fη
� � ¼ σpAr fτð ÞAa fη

� �
exp �j2πfηη fη

� �	 

:exp �j

4π fc þ fτð Þ
c

R η fη
� �� �� j

πf 2τ
γ

� � ð14Þ

where Aa(fη) is the envelope of the Doppler frequency.
What should be pointed out here is that the odd terms are
zero due to the trigonometric functions in the range equa-
tion. It is necessary to keep (14) to a certain order when the
image is well focused. The analysis of it will be mentioned
in detail in Section 4. Moreover, according to (12), (13) and
(14), the phase in the 2D spectrum of the target point signal
can be rewritten as follows:

S2df fτ; fη
� � ¼ σpAr fτð ÞAa fη

� �
exp jφ fτ; fη

� �� � ð15Þ

and the phase term in (15) can be shown as follows:

φ fτ; fη
� � ¼ � 4π fc þ fτð Þ

c
Rcen þ π

k2

c
4 fc þ fτð Þ f

2
η

� πk4
64k42

c
fc þ fτ

� �3

f 4η � πf 2τ
γ

ð16Þ
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In (16), the phase in the 2D spectrum is kept up to the
fourth-order with respect to fη, and a more precise
spectrum is obtained. Herein, the third term on the
right-hand side of the equal sign indicates the curvature
of the circular trajectory. In the following section, the
imaging algorithm for CTSSAR will be given based on
the 2D spectrum derived by the above analysis.
3.2. Imaging algorithm
Our objective is to obtain the frequency-domain signal
containing the linear terms of the target only. It can be
seen from the above deduction that there are variables
such as fτ, fη, and R(η) in the spectrum. Due to the
existence of the coupling between the range frequency
fτ and the Doppler frequency fη in the 2D spectrum, it
is not easy to get the separated linear frequency term.
Herein, the Taylor series expansion of (16) is operated
in fτ = 0, i.e.,

θc ¼ � 4π fc þ fτð ÞRcen

c
þ φaz fη

� �þ φrcm fη
� �

fτ

þ φsrc fη
� �

f 2τ þ φrg fτð Þ þ φres fη; fτ
� � ð17Þ
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Figure 2 Full-scene SAR imaging algorithm flow chart.
where �4πfτRcen

c is the linear phase representing the loca-
tion of target point, where the energy of the target can

be focused within the corresponding range cell. �4πfcRcen

c

is the constant term, which is independent from fτ and
fη, so its influence to the focusing can be omitted. In
addition, the other five terms can be shown as follows:
a. Azimuth modulation term: The second phase term on
the right-hand side of the equal sign of (17) is the
azimuth modulation term, i.e.,

φaz fη
� � ¼ π:c:f 2η

4k2fc
� πk4c3f 4η

64k42 f 3c
ð18Þ

This term indicates the azimuth modulation. The azi-
muth modulation rate is range-variant for the fact that
the k-coefficients are varied with range cells. The coup-
ling between range and azimuth cannot be removed in
the 2D frequency domain, so the term must be compen-
sated in the range/Doppler domain. Herein, the azimuth
compression is completed by multiplying the signal with
the azimuth match filtering function after range cell
migration (RCM) and range compression.
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Figure 3 Phase errors for quadratic range approximation.

Figure 4 Phase errors for quartic range approximation.
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b. RCM term:
The third phase term on the right-hand side of the
equal sign of (17) is the RCM term, i.e.,

φrcm fη
� � ¼ � π:c

4k2

fη
fc

� �2

þ 3πk4c3

64k42

fη
fc

� �4

ð19Þ

This term varies with fη, representing the coupling
between the range and the azimuth which needs to
be compensated. For the common case of CTSSAR
imaging, the range swath is not so wide that the
RCM term’s range variation can be neglected. In the
following process, the scene center is chosen as the
reference and the corresponding RCM correction
function is established in the 2D frequency domain
to realize the range migration correction.

c. Secondary range compression term (SRC):
The fourth phase term on the right-hand side of the
equal sign of (17) is the SRC term, i.e.,

φsrc fη
� � ¼ π:C:f 2η

4k2f 3c
� 3πk4c3f 4η

32k42 f 5c
ð20Þ

This term indicates the variation of the range
modulation rate resulted from the coupling between
fτ and fη. So, this term will impact the range
focusing if not considered properly, while the
variation of the SRC with range can be neglected
usually. Thus, the compensated term in the 2D
frequency domain is built with the scene center the
reference to remove the influence of the SRC term
to imaging.

d. Range modulation term:
The fifth phase term on the right-hand side of the
equal sign of (17) is the range modulation term, i.e.,

φrg fτð Þ ¼ �πf 2τ
γ

ð21Þ

This term presents the range modulation of the
transmitted signal, which is independent from fη. It
can be compensated in the 2D frequency domain as
well.

e. Residue phase term:
The sixth phase term on the right-hand side of the
equal sign of (17) is the residue phase term, i.e.,

res fη; fτ
� � ¼ �π:c:f 2η

4k2

f 3τ
f 3c fc þ fτð Þ

�πk4c3f 4η
64k42

1= fc þ fτð Þ � 1=f 3c þ 3fτ=f
4
c � 6f 2τ =f

5
c

	 

ð22Þ
This term indicates the high-order residue phase
which will be compensated in the 2D frequency domain.
Therefore, according to the above analysis, it is pos-

sible to acquire the thinking of the modified Omega-K
method. Based on the 2D spectrum expression of the
SAR echo signal shown in (15) and (16), first the phase
of the echo signal is coarsely compensated by
performing match filtering for the center point and then
the residual range-variant phase is compensated in
range Doppler domain.
3.3. Detailed processing steps
Based on the above analysis, the full algorithm flow
chart is shown in Figure 2.



Table 1 Radar parameters

Wavelength 0.03 m

Signal bandwidth 300 MHz

Sampling rate 500 MHz

Pulse width 10 μs

Azimuth beam width 5°

Height 2000 m

Platform velocity 100 m/s

Patch angle 30°

PRF 1 kHz

Scene center location (0,5154.7,0)
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Theoretically, the proposed algorithm can process the
data over the full rotation. But in practice, we prefer to
divide the data into several parts to alleviate the pressure
of the computer memory. There are certain overlaps be-
tween two divided block echo data just like the conven-
tional stripmap data processing. It is necessary to clarify
that the divided block data should include a whole inte-
gration time of the interested target, namely, the interval
from the beginning to the end of the illumination of the
target. These procedures about azimuth data segmenta-
tion, geometric correction, and image mergence are simi-
lar to the relative operations represented in [16], readers
can refer to them.
The detailed steps to complete imaging are given as

follows:

Step 1 Segment the data into blocks in azimuth.
Step 2 2D FFT to transform the echo signal presented
in (5) to 2D frequency domain as shown in (15).
Step 3 Compensate the range migration term φrcm(fη),
range modulation term φrg(fη), residue phase term φres

(fη, fτ), and SRC term φsrc(fη), this can be implemented
by multiplying them with their conjugate phase,

H1 fτ; fη;R0
� � ¼ exp jφ fτ; fη

� �	 
 ð23Þ
Figure 5 Center point imaging result using quadratic approximation me
Range impulse response.
where

φ fτ; fη
� � ¼ π:c

4k2 R0ð Þ
fη
fc

� �2

� 3πk4 R0ð Þc3
64k42 R0ð Þ

fη
fc

� �4

� π:c:f 2η
4k2 R0ð Þf 3c

þ 3πk4 R0ð Þc3f 4η
32k42 R0ð Þf 5c

þ π:c:f 2η
4k2 R0ð Þ

f 3τ
f 3c fc þ fτð Þ

þπk4 R0ð Þc3f 4η
64k42 R0ð Þ

�
1= fc þ fτð Þ � 1=f 3c
þ3fτ=f

4
c � 6f 2τ =f

5
c

�

ð24Þ

Step 4 Range IFFT to convert the signal to the range
Doppler domain and then multiply it with the azimuth
match filtering function to finish azimuth compression.
The azimuth match filtering function is presented as
follows:

H2 fη;Rcen
� � ¼ exp �j

π:c:f 2η
4k2 Rcenð Þfc þ j

π:k4 Rcenð Þ:c3f 4η
64k42 Rcenð Þ:f 3c

 !

ð25Þ

Step 5 Perform azimuth IFFT to obtain a well-focused
SAR image for each block.
Step 6 Merge all the block sub-images into a whole
image after operating geometric correction.
3.4. Theoretical resolution
For CTSSAR, the analytical expression of range theoret-
ical resolution is the same as that of the conventional
rectilinear stripmap SAR, namely, ρr ¼ c

2B , where B is
the bandwidth. However, due to the impact of the circu-
lar trajectory, the azimuth theoretical resolution is dif-
ferent from that in the conventional stripmap mode.
Assuming that there are two point targets with azimuth
angle difference Δθ, the Doppler difference of the two
targets can be expressed in the following equation based
on the range equation (1).
thod. (a) 2D impulse response. (b) Azimuth impulse response. (c)



Figure 6 Center point imaging result using the proposed method. (a) 2D impulse response. (b) Azimuth impulse response. (c) Range
impulse response.
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Δf ¼ 2ωrarpsinΔθ
λRcen

ð26Þ

Let the azimuth integration time be Td and the number
of it N. We suppose that the interval of the two selected
point targets is the system minimum distinguishable unit.
Then

fPRF
N

¼ 2ωrarpΔθ
λRcen

; ð27Þ

where fPRF denotes the pulse repetition frequency. From
(27), the analytical expression for the azimuth theoretical
resolution in CTSSAR can be obtained.

ρa ¼ rpΔθ ¼ λRcenfPRF
2Nωra

¼ λRcen

2vTd
ð28Þ

Here, we use the expression of Doppler FM rate for
CTSSAR.

ka ¼ 2vvp
λRcen

ð29Þ

Hence, the expression of azimuth theoretical reso-

lution is obtained, that is, ρa ¼ λRcen
2vTd

. In addition,
Figure 7 Nearest point imaging result using the proposed method. (a
impulse response.
relational analysis can be found in [16] and readers can
refer to it.

4. Simulation results
In SAR imaging, the negligible high-order term error
should satisfy the criterion that the maximum double
range phase error is less than π/4 rad for the range ap-
proximation errors [19]. Herein, it is necessary to select
an appropriate approximated order. On one side, if the
approximation order is too small, the precision will not
be large enough to focus the image data. On the other
side, too large an approximation order will surely bring
certain extra computation, but it will not be the main
computational consumption in the practical use for the
reason that it is too small compared with the primary
computational operation and it can be precalculated and
set in the RAM. Nevertheless, more important is that if
higher-order range approximation is adopted, the deriv-
ation of the 2D spectrum will become very complex and
difficult when using MSR [17], especially for the case
that the order is larger than fourth-order, the condition
under which it is very complicated for calculating the 2D
spectrum. In addition, it is widely accepted that the com-
putational complexity of the time domain BP algorithm is
) 2D impulse response. (b) Azimuth impulse response. (c) Range



Figure 8 Farthest point imaging result using the proposed method. (a) 2D impulse response. (b) Azimuth impulse response. (c) Range
impulse response.
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O(N3) [15]. Taking the complex multiplication into con-
sideration, as illustrated in [19], the number of floating
point operations (FLOPs) is used here to estimate the
computation load of the algorithm. An FFT or IFFT of
length N requires 5 N log2(N)FLOPs. A complex phase
multiplication requires six FLOPs. It is assumed that Na is
the number of input lines (azimuth samples); Nr is the
number of input range samples per line. Thus, according
to the algorithm flowchart, there are four FFT (or IFFT)
operations and two complex multiplication operations:

Ntotal ¼ 5NrNalog2 Nrð Þ � 3þ 6NrNa � 2
þ 5NrNalog2 Nað Þ ð30Þ

Therefore, let Nr = Na = N, the computational complex-
ity of our algorithm is O(N2 log2(N)), which is a tremen-
dous improvement for the computational efficiency. In the
following simulation, corresponding computational pro-
cessing time experiments will be carried out with related
analyses. Now let us discuss how large the order is needed
to satisfy the request of imaging quality.
Here, we choose a series of typical parameters. As-

sume that the parameters of the flight platform are
Hc = 2000 m, ra = 4000 m, rp = 5154.7 m, v = 100 m/s,
and the wavelength λ = 0.03 m, now compute the quad-
ratic approximation errors and the quartic approximation
errors in one synthetic aperture, as shown in Figures 3
and 4, respectively. The dashed line denotes the location
when the phase error is π/4 rad, and the solid line indi-
cates the phase errors introduced by different range
approximations in the integrated synthetic aperture time.
Table 2 Image quality parameters using the proposed metho

Parameter Theoretical one Pn

Azimuth Range Azimuth R

Resolution (m) 0.125 0.443 0.126 0

PSLR (dB) −13.26 −13.22 −

ISLR (dB) −9.8 −9.83 −
Besides, the cubic approximation errors are not consid-
ered here for the fact that the odd terms are all zero. It
can be seen clearly from the figure that the maximum
value of the quadratic approximation errors is about 1.7
rad, larger than π/4 rad indicated by the dashed line in the
figure, which implies that the approximated errors intro-
duced by quadratic approximation cannot be ignored, or
the degradation of the image focusing may occur. How-
ever, the maximum quadratic approximated errors is
about 3 × 10–3 rad, far less than π/4 rad, so the dashed
line does not noted in the figure. Thus, it is obvious that
the expression in (15) is more applicable than the quad-
ratic approximated one.
In order to verify the effectiveness of the proposed

algorithm in this article, let us compare our algorithm
with the quadratic approximation method in terms of
image quality. The simulation parameters are shown in
Table 1, there are three target points Pn, Pm, and Pf in
the scene, and their coordinates are Pn(0, 4854.7, 0), Pm
(0, 5154.7, 0), and Pf(0, 5454.7, 0), respectively.
The imaging results of the two algorithms for the same

scene center point is shown in Figures 5 and 6 to com-
pare the two algorithms, where (a) is the 2D impulse re-
sponse of the target point, (b) is the azimuth impulse
response, and (c) is the range impulse response. From
the figure, we can see that the quadratic approximation
is not able to represent the enough phase variant infor-
mation and the focusing is not satisfied. In contrast, the
algorithm proposed in this article keeps the range up to
fourth-order and presents more range-variant informa-
tion in the 2D frequency domain. So, it is possible to
d

Pm Pf

ange Azimuth Range Azimuth Range

.443 0.126 0.445 0.126 0.443

13.29 −13.25 −13.26 −13.69 −13.28

9.83 −9.88 −9.85 −9.94 −9.89



(a) quadratic range model (b) our proposed range model

(c) BP (d) higher order range model
Figure 9 Comparison of different imaging method for a selected point target. (a) Quadratic range model. (b) Our proposed range model.
(c) BP. (d) Higher-order range model.
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have access to the accurate image with high resolution.
Figures 7 and 8 are the imaging results of the nearest
point and the farthest point using our method, respect-
ively. It is obvious that not only the center point, but
also other points in different range are all well focused,
which prove the feasibility of the proposed method
successfully.
Table 2 lists the image quality parameters to the three

points of our algorithm. Besides, the theoretical range
resolution and azimuth resolution are 0.443 and 0.125
m, respectively [16]. It can be seen from Table 2 that
each parameter is close to the theoretical one, which in-
dicates satisfactory imaging results and further validates
the effectiveness and feasibility.
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To further illustrate the superiority of the proposed
algorithm over other imaging methods, some imaging
results are provided and computational experiments are
implemented here. Figure 9 indicates the contour plots
of different imaging method for a selected point target
Pm, where Figure 9a delineates the imaging result for
the quadratic range approximated algorithm, Figure 9b
shows the contour of the proposed algorithm based on
quartic range approximation, Figure 9c represents the
result of BP algorithm, and Figure 9d is the image for
higher-order range approximation (sixth-order is used
here). It is obvious that the quadratic approximation is
not precise enough to focus the image in CTSSAR and
the time domain BP algorithm seems to be trusted to
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handle this task perfectly. Unfortunately, too huge the
computational load makes it difficult to be applied to
the practical engineering use. In contrast, our proposed
method can have an access to an ideal result with high
computational efficiency. In addition, we can find that
the image with higher-order approximation is well fo-
cused as well, but we can hardly find any improvement
over Figure 9b. So, it confirms that our approximation
accuracy is high enough and an extra higher-order ap-
proximation appears to be unnecessary in CTSSAR pro-
cessing. Besides, the higher the approximated order is,
the harder the derivation of the 2D spectrum is.
In order to validate the computational efficiency of

our algorithm, the computational loads are measured.
In our practical experiment, the operation time for the
time domain BP algorithm is 14676.80 s, the time for
our proposed algorithm is 40.43 s, and the higher-order
approximation method (we use sixth-order approxima-
tion to simulate here) consumes 48.58 s. Although the
quadratic method needs only 26.67 s, we can see obvi-
ous defocused phenomenon in the obtained image
(shown in Figure 9a). So, we can easily get a conclusion
that the BP algorithm is too slow for imaging, the quad-
ratic method cannot reach our imaging standard, and
the higher-order method needs a little more time com-
pared with the proposed method (though we can optimize
the procedure in the practical use as mentioned before)
without any improvement for the imaging. Moreover, the
higher-order approximation will bring huge calculating
obstacles for the derivation of the 2D spectrum using the
MSR. Therefore, after comparison with all kinds of im-
aging method, it is apparent that the proposed algorithm
is a rational, wise choice for CTSSAR.
In practice, the platform cannot always move along an

ideal circular path. The trajectory is influenced by many
factors. And the sensitivity to the motion errors is ana-
lyzed in the following. Three variables of the platform,
namely, the height Hc, the flying radius ra, and the angle
velocity ω, are selected to carry out the experiment. The
simulation experiment results are denoted in Figure 10,
indicating the phase errors varying with each parameter
errors. In addition, in SAR imaging processing, the max-
imum phase error for range that will not result in defocus
of the image is π/4 rad [19]. It can be seen from the
figures that the phase errors are relatively susceptible to
the variations of the parameters. The noticeable degrad-
ation will take place when the radius error Δra ≥ 3.75 ×
10–3 m, the height error Δh ≥ 2.165 × 10−3 m, or the angle
velocity error Δω ≥ 0.1346 rad/m. Thus, to compensate
for these motion errors, the platform should be equipped
with a global positioning system and high accurate inertial
navigation system (INS), and more autofocusing tech-
niques are required to be introduced to accomplish fine
motion compensation lest the case that the INS cannot
meet the request of the motion compensation. Further-
more, if the moving path is too far away from ideal and
the trajectory is too complex to make the frequency-
domain algorithm being available, the time-domain algo-
rithm (such as BP method) may be an excellent choice.

5. Conclusions
In this article, the CTSSAR imaging geometry model is
established first, and the imaging difficulties and obstacles
are unveiled. Then the point target range function and its
2D frequency spectrum are deduced by MSR, the problem
of choosing the approximation order is solved through the
analysis of the approximated phase errors and it is verified
by related experiments. Based on the derived spectrum,
the corresponding modified Omega-K method is devel-
oped. The high-order term introduced from the circular
track is compensated at the beginning of the algorithm.
Range compression and RCMC are then conducted in 2D
domain followed with azimuth compression to obtain a
sub-image, the ultimate image is formed by merging all
the sub-images together. Compared with the quadratic
approximation method, the proposed method has more
accuracy. At the end of the article, the feasibility and effi-
ciency of the proposed approach are validated with the
simulation experiments.
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