109 research outputs found

    Updated isoprene and terpene emission factors for the Interactive BVOC (iBVOC) emission scheme in the United Kingdom Earth System Model (UKESM1.0)

    Get PDF
    Biogenic volatile organic compounds (BVOCs) influence atmospheric composition and climate, and their emissions are affected by changes in land use and land cover (LULC). Current Earth system models calculate BVOC emissions using parameterisations involving surface temperature, photosynthetic activity, CO2 and vegetation type and use emission factors (EFs) to represent the influence of vegetation on BVOC emissions. We present new EFs for the Interactive BVOC Emission Scheme (iBVOC) used in the United Kingdom Earth System Model (UKESM), based on those used by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) v2.1 scheme. Our new EFs provide an alternative to the current EFs used in iBVOC, which are derived from older versions of MEGAN and the Organizing Carbon and Hydrology in Dynamic Ecosystem (ORCHIDEE) emission scheme. We show that current EFs used by iBVOC result in an overestimation of isoprene emissions from grasses, particularly C4 grasses, due to an oversimplification that incorporates the EF of shrubs (high isoprene emitters) into the EF for C3 and C4 grasses (low isoprene emitters). The current approach in iBVOCs assumes that C4 grasses are responsible for 40 % of total simulated isoprene emissions in the present day, which is much higher than other estimates of ∼ 0.3 %–10 %. Our new isoprene EFs substantially reduce the amount of isoprene emitted by C4 grasslands, in line with observational studies and other modelling approaches, while also improving the emissions from other known sources, such as tropical broadleaf trees. Similar results are found from the change to the terpene EF. With the new EFs, total global isoprene and terpene emissions are within the range suggested by the literature. While the existing model biases in the isoprene column are slightly exacerbated with the new EFs, other drivers of this bias are also noted. The disaggregation of shrub and grass EFs provides a more faithful description of the contribution of different vegetation types to BVOC emissions, which is critical for understanding BVOC emissions in the pre-industrial and under different future LULC scenarios, such as those involving wide-scale reforestation or deforestation. Our work highlights the importance of using updated and accurate EFs to improve the representation of BVOC emissions in Earth system models and provides a foundation for further improvements in this area

    Toward an improved representation of middle atmospheric dynamics thanks to the ARISE project

    Get PDF
    This paper reviews recent progress toward understanding the dynamics of the middle atmosphere in the framework of the Atmospheric Dynamics Research InfraStructure in Europe (ARISE) initiative. The middle atmosphere, integrating the stratosphere and mesosphere, is a crucial region which influences tropospheric weather and climate. Enhancing the understanding of middle atmosphere dynamics requires improved measurement of the propagation and breaking of planetary and gravity waves originating in the lowest levels of the atmosphere. Inter-comparison studies have shown large discrepancies between observations and models, especially during unresolved disturbances such as sudden stratospheric warmings for which model accuracy is poorer due to a lack of observational constraints. Correctly predicting the variability of the middle atmosphere can lead to improvements in tropospheric weather forecasts on timescales of weeks to season. The ARISE project integrates different station networks providing observations from ground to the lower thermosphere, including the infrasound system developed for the Comprehensive Nuclear-Test-Ban Treaty verification, the Lidar Network for the Detection of Atmospheric Composition Change, complementary meteor radars, wind radiometers, ionospheric sounders and satellites. This paper presents several examples which show how multi-instrument observations can provide a better description of the vertical dynamics structure of the middle atmosphere, especially during large disturbances such as gravity waves activity and stratospheric warming events. The paper then demonstrates the interest of ARISE data in data assimilation for weather forecasting and re-analyzes the determination of dynamics evolution with climate change and the monitoring of atmospheric extreme events which have an atmospheric signature, such as thunderstorms or volcanic eruptions

    Models meet data: Challenges and opportunities inimplementing land management in Earth system models

    Get PDF
    As the applications of Earth system models (ESMs) move from general climate projections toward questions of mitigation and adaptation, the inclusion of land management practices in these models becomes crucial. We carried out a survey among modeling groups to show an evolution from models able only to deal with land‐cover change to more sophisticated approaches that allow also for the partial integration of land management changes. For the longer term a comprehensive land management representation can be anticipated for all major models. To guide the prioritization of implementation, we evaluate ten land management practices—forestry harvest, tree species selection, grazing and mowing harvest, crop harvest, crop species selection, irrigation, wetland drainage, fertilization, tillage, and fire—for (1) their importance on the Earth system, (2) the possibility of implementing them in state‐of‐the‐art ESMs, and (3) availability of required input data. Matching these criteria, we identify “low‐hanging fruits” for the inclusion in ESMs, such as basic implementations of crop and forestry harvest and fertilization. We also identify research requirements for specific communities to address the remaining land management practices. Data availability severely hampers modeling the most extensive land management practice, grazing and mowing harvest, and is a limiting factor for a comprehensive implementation of most other practices. Inadequate process understanding hampers even a basic assessment of crop species selection and tillage effects. The need for multiple advanced model structures will be the challenge for a comprehensive implementation of most practices but considerable synergy can be gained using the same structures for different practices. A continuous and closer collaboration of the modeling, Earth observation, and land system science communities is thus required to achieve the inclusion of land management in ESMs

    Multicultural Education and Communication Competences of the Pupils in a Multiethnic Classroom in the Czech Republic

    No full text
    In accordance with new principles of curricular policy formulated in the National Program of Development of Education in the Czech Republic in 2004 the new system of curricular documents for education of pupils from three to nineteen years of age is given. The aim of the article is to describe general situation with this related and outline main tasks which wait the Czech educational system in the connection with these problems in immediate future

    Antioxidant enzymes as biochemical markers for sharka resistance in apricot

    No full text

    Global biogenic volatile organic compound emissions in the ORCHIDEE and MEGAN models and sensitivity to key parameters

    No full text
    A new version of the biogenic volatile organic compounds (BVOCs) emission scheme has been developed in the global vegetation model ORCHIDEE (Organizing Carbon and Hydrology in Dynamic EcosystEm), which includes an extended list of biogenic emitted compounds, updated emission factors (EFs), a dependency on light for almost all compounds and a multi-layer radiation scheme. Over the 2000–2009 period, using this model, we estimate mean global emissions of 465 Tg C yr−1 for isoprene, 107.5 Tg C yr−1 for monoterpenes, 38 Tg C yr−1 for methanol, 25 Tg C yr−1 for acetone and 24 Tg C yr−1 for sesquiterpenes. The model results are compared to state-of-the-art emission budgets, showing that the ORCHIDEE emissions are within the range of published estimates. ORCHIDEE BVOC emissions are compared to the estimates of the Model of Emissions of Gases and Aerosols from Nature (MEGAN), which is largely used throughout the biogenic emissions and atmospheric chemistry community. Our results show that global emission budgets of the two models are, in general, in good agreement. ORCHIDEE emissions are 8 % higher for isoprene, 8 % lower for methanol, 17 % higher for acetone, 18 % higher for monoterpenes and 39 % higher for sesquiterpenes, compared to the MEGAN estimates. At the regional scale, the largest differences between ORCHIDEE and MEGAN are highlighted for isoprene in northern temperate regions, where ORCHIDEE emissions are higher by 21 Tg C yr−1, and for monoterpenes, where they are higher by 4.4 and 10.2 Tg C yr−1 in northern and southern tropical regions compared to MEGAN. The geographical differences between the two models are mainly associated with different EF and plant functional type (PFT) distributions, while differences in the seasonal cycle are mostly driven by differences in the leaf area index (LAI). Sensitivity tests are carried out for both models to explore the response to key variables or parameters such as LAI and light-dependent fraction (LDF). The ORCHIDEE and MEGAN emissions are differently affected by LAI changes, with a response highly depending on the compound considered. Scaling the LAI by a factor of 0.5 and 1.5 changes the isoprene global emission by −21 and +8 % for ORCHIDEE and −15 and +7 % for MEGAN, and affects the global emissions of monoterpenes by −43 and +40 % for ORCHIDEE and −11 and +3 % for MEGAN. Performing a further sensitivity test, forcing ORCHIDEE with the MODIS LAI, confirms the high sensitivity of the ORCHIDEE emission module to LAI variation. We find that MEGAN is more sensitive to variation in the LDF parameter than ORCHIDEE. Our results highlight the importance and the need to further explore the BVOC emission estimate variability and the potential for using models to investigate the estimated uncertainties

    Modeling sensitivity of biogenic VOC emissions to environmental factors

    Get PDF
    International audienceGlobal inventory of biogenic VOC emissions MEGAN-MACC (REF) has been created using the model MEGANv2.1 (Guenther et al., 2012). Emissions of the main chemical species emitted by vegetation were estimated on monthly basis for the period of 1980 – 2010. The global BVOC emission total is dominated by isoprene (69% of global total). Further, we present three sensitivity isoprene emission inventories. Dataset SM accounts for impact of soil moisture deficiency on isoprene emission. In dataset titled SW a simplified calculation of PAR (Photosynthetically Active Radiation) input variable has been used assuming that PAR equals to ½ of incoming shortwave radiation. In dataset CRU, we replaced the MERRA meteorological fields (used for the reference as well as for SM and SW datasets) by the meteorological inputs from the CRU-NCEP reanalysis. These variations in driving environmental factors resulted in substantial changes of isoprene global total which decreased by 50% in SM, increased by 16% in SW and decreased by 27% in CRU sensitivity model runs when compared to the reference
    corecore