22 research outputs found

    Intellectual Asset Management for Collaborative Business Support

    Get PDF

    Survey of the Farm Management, Focusing on the Regional Difference and Cattle Farming in Burkina Faso

    Get PDF
    In Burkina Faso the history using of cattle as draft power for cultivation is not long. This study was conducted to investigate the farm management, focusing on the regional difference and the presence of cattle farming in the country. Interview was carried out on 30 farms from B Province in the Centre-West Region consisting of 8 non-cattle owners (BNs) and 22 cattle owners (BCs), and on 9 farms of cattle owners from H Province in the Haut-Bassins Region (HCs) in November 2013. The average household sizes of BNs, BCs and HCs were 16.5, 27.2 and 31.3, respectively. The ratios of BNs, BCs and HCs having income sources from livestock farming equivalent to or more than crop farming were 25, 50 and 67%, respectively. The average cattle number of BCs was 8.6 and that of HCs was 50.8. The average planted areas of BNs, BCs and HCs were 4.9, 12.0 and 7.0 ha, respectively. The BCs and BNs had large planted area of millet, rice, sorghum and peanut, on the other hand, planted area of maize, sesame seed, cotton and vegetables was large in HCs. The gross income from the crop farming of BNs and BCs were 95,000 and 114,000 FCFA/year, respectively, which were higher than that of HCs: 59,000 FCFA/year. The gross income and profit from cattle farming of HCs were twice and thrice as high as those of BCs, respectively. The ratio of the gross income from cattle farming to that from total farming of BCs and HCs were high, 72 and 80%, respectively. The results suggested that cattle farming contributed to the profit of farmers in B Province, who had a low profit margin of the crop and vegetable farming due to the constraints of soil condition and climate results from the limit of precipitation

    Proposition d'un cadre méthodologique pour le management intégré des risques et des processus d'entreprise

    Get PDF
    L'ingénierie d'entreprise conçoit et met en application des projets d'amélioration de la structure et du fonctionnement des organisations de production de biens ou de services. Elle développe des démarches fondées sur la modélisation, en particulier la modélisation des processus métiers, pour assurer une qualité et une cohérence d'ensemble des projets. Aujourd'hui, la prise en compte du risque en ingénierie d'entreprise fait l'objet de nombreux développements, liés à un environnement perçu comme de plus en plus agressif et imprévisible. Des cadres de référence sont même publiés pour guider les entreprises dans ces nouvelles dimensions du pilotage de l'organisation autour du risque. Notre étude se consacre à la conception des processus métier dirigée par les risques comme une composante à part entière de l'ingénierie d'entreprise. Après avoir fait une synthèse des connaissances sur les univers du risque et des processus, un problème d'intégration de ces connaissances est formulé. Un cadre méthodologique pour le management intégré des risques et des processus est ainsi conçu et décrit. Il repose sur la coordination des cycles de vie de la gestion des risques et de la gestion des processus métier, sur la définition d'un cadre conceptuel unifié permettant d'identifier et de maîtriser les informations échangées entre eux, et enfin sur un langage de modélisation adapté à une description des situations et étendant les capacités d'un outil de modélisation du marché (ARIS Business Architect). Un cas d'études du domaine de la santé vient illustrer le bien fondé de l'application de ce cadre méthodologique sur un cas concret. ABSTRACT : Enterprise engineering is concerned with the design of projects which aim to improve the structure and behaviour of organisations producing goods and services. It develops approaches based on modelling techniques, particularly on business process modelling in order to assure the quality and the global consistency of the project portfolio. Nowadays, risk consideration in enterprise engineering is a growing importance since the business environment is becoming more and more competitive and unpredictable. In fact, reference frameworks providing guidance for enterprise risk management are developed to tackle this. Our research focuses on risk driven business process design as an integral part of enterprise engineering. After delivering a synthesis of work related to risks and business processes, a research question concerning the integration of both has been addressed. A framework for the integrated management of risks and business processes is suggested. It is based on three components: a coordination of risk and business process management lifecycles, a unified conceptual framework supporting information exchanges between the coordinated lifecycles, and finally a modelling language adapted to the description of risky situations. The later extends the features of a commercial modelling tool (ARIS Business Architect). A case study from the health sector illustrates the foundation of the methodological framework

    The duration of protection against clinical malaria provided by the combination of seasonal RTS,S/AS01E vaccination and seasonal malaria chemoprevention versus either intervention given alone

    Get PDF
    BACKGROUND: A recent trial of 5920 children in Burkina Faso and Mali showed that the combination of seasonal vaccination with the RTS,S/AS01E malaria vaccine (primary series and two seasonal boosters) and seasonal malaria chemoprevention (four monthly cycles per year) was markedly more effective than either intervention given alone in preventing clinical malaria, severe malaria, and deaths from malaria. METHODS: In order to help optimise the timing of these two interventions, trial data were reanalysed to estimate the duration of protection against clinical malaria provided by RTS,S/AS01E when deployed seasonally, by comparing the group who received the combination of SMC and RTS,S/AS01E with the group who received SMC alone. The duration of protection from SMC was also estimated comparing the combined intervention group with the group who received RTS,S/AS01E alone. Three methods were used: Piecewise Cox regression, Flexible parametric survival models and Smoothed Schoenfeld residuals from Cox models, stratifying on the study area and using robust standard errors to control for within-child clustering of multiple episodes. RESULTS: The overall protective efficacy from RTS,S/AS01E over 6 months was at least 60% following the primary series and the two seasonal booster doses and remained at a high level over the full malaria transmission season. Beyond 6 months, protective efficacy appeared to wane more rapidly, but the uncertainty around the estimates increases due to the lower number of cases during this period (coinciding with the onset of the dry season). Protection from SMC exceeded 90% in the first 2-3 weeks post-administration after several cycles, but was not 100%, even immediately post-administration. Efficacy begins to decline from approximately day 21 and then declines more sharply after day 28, indicating the importance of preserving the delivery interval for SMC cycles at a maximum of four weeks. CONCLUSIONS: The efficacy of both interventions was highest immediately post-administration. Understanding differences between these interventions in their peak efficacy and how rapidly efficacy declines over time will help to optimise the scheduling of SMC, malaria vaccination and the combination in areas of seasonal transmission with differing epidemiology, and using different vaccine delivery systems. TRIAL REGISTRATION: The RTS,S-SMC trial in which these data were collected was registered at clinicaltrials.gov: NCT03143218

    Impact of seasonal RTS,S/AS01E vaccination plus seasonal malaria chemoprevention on the nutritional status of children in Burkina Faso and Mali.

    Get PDF
    BACKGROUND: A recent trial in Burkina Faso and Mali showed that combining seasonal RTS,S/AS01E malaria vaccination with seasonal malaria chemoprevention (SMC) substantially reduced the incidence of uncomplicated and severe malaria in young children compared to either intervention alone. Given the possible negative effect of malaria on nutrition, the study investigated whether these children also experienced lower prevalence of acute and chronic malnutrition. METHODS: In Burkina Faso and Mali 5920 children were randomized to receive either SMC alone, RTS,S/AS01E alone, or SMC combined with RTS,S/AS01E for three malaria transmission seasons (2017-2019). After each transmission season, anthropometric measurements were collected from all study children at a cross-sectional survey and used to derive nutritional status indicators, including the binary variables wasted and stunted (weight-for-height and height-for-age z-scores below - 2, respectively). Binary and continuous outcomes between treatment groups were compared by Poisson and linear regression. RESULTS: In 2017, compared to SMC alone, the combined intervention reduced the prevalence of wasting by approximately 12% [prevalence ratio (PR) = 0.88 (95% CI 0.75, 1.03)], and approximately 21% in 2018 [PR = 0.79 (95% CI 0.62, 1.01)]. Point estimates were similar for comparisons with RTS,S/AS01E, but there was stronger evidence of a difference. There was at least a 30% reduction in the point estimates for the prevalence of severe wasting in the combined group compared to the other two groups in 2017 and 2018. There was no difference in the prevalence of moderate or severe wasting between the groups in 2019. The prevalence of stunting, low-MUAC-for-age or being underweight did not differ between groups for any of the three years. The prevalence of severe stunting was higher in the combined group compared to both other groups in 2018, and compared to RTS,S/AS01E alone in 2017; this observation does not have an obvious explanation and may be a chance finding. Overall, malnutrition was very common in this cohort, but declined over the study as the children became older. CONCLUSIONS: Despite a high burden of malnutrition and malaria in the study populations, and a major reduction in the incidence of malaria in children receiving both interventions, this had only a modest impact on nutritional status. Therefore, other interventions are needed to reduce the high burden of malnutrition in these areas. TRIAL REGISTRATION: https://www.clinicaltrials.gov/ct2/show/NCT03143218 , registered 8th May 2017

    Seasonal Malaria Vaccination with or without Seasonal Malaria Chemoprevention.

    Get PDF
    BACKGROUND: Malaria control remains a challenge in many parts of the Sahel and sub-Sahel regions of Africa. METHODS: We conducted an individually randomized, controlled trial to assess whether seasonal vaccination with RTS,S/AS01E was noninferior to chemoprevention in preventing uncomplicated malaria and whether the two interventions combined were superior to either one alone in preventing uncomplicated malaria and severe malaria-related outcomes. RESULTS: We randomly assigned 6861 children 5 to 17 months of age to receive sulfadoxine-pyrimethamine and amodiaquine (2287 children [chemoprevention-alone group]), RTS,S/AS01E (2288 children [vaccine-alone group]), or chemoprevention and RTS,S/AS01E (2286 children [combination group]). Of these, 1965, 1988, and 1967 children in the three groups, respectively, received the first dose of the assigned intervention and were followed for 3 years. Febrile seizure developed in 5 children the day after receipt of the vaccine, but the children recovered and had no sequelae. There were 305 events of uncomplicated clinical malaria per 1000 person-years at risk in the chemoprevention-alone group, 278 events per 1000 person-years in the vaccine-alone group, and 113 events per 1000 person-years in the combination group. The hazard ratio for the protective efficacy of RTS,S/AS01E as compared with chemoprevention was 0.92 (95% confidence interval [CI], 0.84 to 1.01), which excluded the prespecified noninferiority margin of 1.20. The protective efficacy of the combination as compared with chemoprevention alone was 62.8% (95% CI, 58.4 to 66.8) against clinical malaria, 70.5% (95% CI, 41.9 to 85.0) against hospital admission with severe malaria according to the World Health Organization definition, and 72.9% (95% CI, 2.9 to 92.4) against death from malaria. The protective efficacy of the combination as compared with the vaccine alone against these outcomes was 59.6% (95% CI, 54.7 to 64.0), 70.6% (95% CI, 42.3 to 85.0), and 75.3% (95% CI, 12.5 to 93.0), respectively. CONCLUSIONS: Administration of RTS,S/AS01E was noninferior to chemoprevention in preventing uncomplicated malaria. The combination of these interventions resulted in a substantially lower incidence of uncomplicated malaria, severe malaria, and death from malaria than either intervention alone. (Funded by the Joint Global Health Trials and PATH; ClinicalTrials.gov number, NCT03143218.)

    Seasonal vaccination with RTS,S/AS01E vaccine with or without seasonal malaria chemoprevention in children up to the age of 5 years in Burkina Faso and Mali: a double-blind, randomised, controlled, phase 3 trial.

    Get PDF
    BACKGROUND: Seasonal vaccination with the RTS,S/AS01E vaccine combined with seasonal malaria chemoprevention (SMC) prevented malaria in young children more effectively than either intervention given alone over a 3 year period. The objective of this study was to establish whether the added protection provided by the combination could be sustained for a further 2 years. METHODS: This was a double-blind, individually randomised, controlled, non-inferiority and superiority, phase 3 trial done at two sites: the Bougouni district and neighbouring areas in Mali and Houndé district, Burkina Faso. Children who had been enrolled in the initial 3-year trial when aged 5-17 months were initially randomly assigned individually to receive SMC with sulphadoxine-pyrimethamine and amodiaquine plus control vaccines, RTS,S/AS01E plus placebo SMC, or SMC plus RTS,S/AS01E. They continued to receive the same interventions until the age of 5 years. The primary trial endpoint was the incidence of clinical malaria over the 5-year trial period in both the modified intention-to-treat and per-protocol populations. Over the 5-year period, non-inferiority was defined as a 20% increase in clinical malaria in the RTS,S/AS01E-alone group compared with the SMC alone group. Superiority was defined as a 12% difference in the incidence of clinical malaria between the combined and single intervention groups. The study is registered with ClinicalTrials.gov, NCT04319380, and is complete. FINDINGS: In April, 2020, of 6861 children originally recruited, 5098 (94%) of the 5433 children who completed the initial 3-year follow-up were re-enrolled in the extension study. Over 5 years, the incidence of clinical malaria per 1000 person-years at risk was 313 in the SMC alone group, 320 in the RTS,S/AS01E-alone group, and 133 in the combined group. The combination of RTS,S/AS01E and SMC was superior to SMC (protective efficacy 57·7%, 95% CI 53·3 to 61·7) and to RTS,S/AS01E (protective efficacy 59·0%, 54·7 to 62·8) in preventing clinical malaria. RTS,S/AS01E was non-inferior to SMC (hazard ratio 1·03 [95% CI 0·95 to 1·12]). The protective efficacy of the combination versus SMC over the 5-year period of the study was very similar to that seen in the first 3 years with the protective efficacy of the combination versus SMC being 57·7% (53·3 to 61·7) and versus RTS/AS01E-alone being 59·0% (54·7 to 62·8). The comparable figures for the first 3 years of the study were 62·8% (58·4 to 66·8) and 59·6% (54·7 to 64·0%), respectively. Hospital admissions for WHO-defined severe malaria were reduced by 66·8% (95% CI 40·3 to 81·5), for malarial anaemia by 65·9% (34·1 to 82·4), for blood transfusion by 68·1% (32·6 to 84·9), for all-cause deaths by 44·5% (2·8 to 68·3), for deaths excluding external causes or surgery by 41·1% (-9·2 to 68·3), and for deaths from malaria by 66·8% (-2·7 to 89·3) in the combined group compared with the SMC alone group. No safety signals were detected. INTERPRETATION: Substantial protection against malaria was sustained over 5 years by combining seasonal malaria vaccination with seasonal chemoprevention, offering a potential new approach to malaria control in areas with seasonal malaria transmission. FUNDING: UK Joint Global Health Trials and PATH's Malaria Vaccine Initiative (through a grant from the Bill & Melinda Gates Foundation). TRANSLATION: For the French translation of the abstract see Supplementary Materials section

    A Methodological framework for the integrated management of risks and business processes

    No full text
    L'ingénierie d'entreprise conçoit et met en application des projets d'amélioration de la structure et du fonctionnement des organisations de production de biens ou de services. Elle développe des démarches fondées sur la modélisation, en particulier la modélisation des processus métiers, pour assurer une qualité et une cohérence d'ensemble des projets. Aujourd'hui, la prise en compte du risque en ingénierie d'entreprise fait l'objet de nombreux développements, liés à un environnement perçu comme de plus en plus agressif et imprévisible. Des cadres de référence sont même publiés pour guider les entreprises dans ces nouvelles dimensions du pilotage de l'organisation autour du risque. Notre étude se consacre à la conception des processus métier dirigée par les risques comme une composante à part entière de l'ingénierie d'entreprise. Après avoir fait une synthèse des connaissances sur les univers du risque et des processus, un problème d'intégration de ces connaissances est formulé. Un cadre méthodologique pour le management intégré des risques et des processus est ainsi conçu et décrit. Il repose sur la coordination des cycles de vie de la gestion des risques et de la gestion des processus métier, sur la définition d'un cadre conceptuel unifié permettant d'identifier et de maîtriser les informations échangées entre eux, et enfin sur un langage de modélisation adapté à une description des situations et étendant les capacités d'un outil de modélisation du marché (ARIS Business Architect). Un cas d'études du domaine de la santé vient illustrer le bien fondé de l'application de ce cadre méthodologique sur un cas concret.Enterprise engineering is concerned with the design of projects which aim to improve the structure and behaviour of organisations producing goods and services. It develops approaches based on modelling techniques, particularly on business process modelling in order to assure the quality and the global consistency of the project portfolio. Nowadays, risk consideration in enterprise engineering is a growing importance since the business environment is becoming more and more competitive and unpredictable. In fact, reference frameworks providing guidance for enterprise risk management are developed to tackle this. Our research focuses on risk driven business process design as an integral part of enterprise engineering. After delivering a synthesis of work related to risks and business processes, a research question concerning the integration of both has been addressed. A framework for the integrated management of risks and business processes is suggested. It is based on three components: a coordination of risk and business process management lifecycles, a unified conceptual framework supporting information exchanges between the coordinated lifecycles, and finally a modelling language adapted to the description of risky situations. The later extends the features of a commercial modelling tool (ARIS Business Architect). A case study from the health sector illustrates the foundation of the methodological framework

    A Methodological framework for the integrated management of risks and business processes

    Get PDF
    L'ingénierie d'entreprise conçoit et met en application des projets d'amélioration de la structure et du fonctionnement des organisations de production de biens ou de services. Elle développe des démarches fondées sur la modélisation, en particulier la modélisation des processus métiers, pour assurer une qualité et une cohérence d'ensemble des projets. Aujourd'hui, la prise en compte du risque en ingénierie d'entreprise fait l'objet de nombreux développements, liés à un environnement perçu comme de plus en plus agressif et imprévisible. Des cadres de référence sont même publiés pour guider les entreprises dans ces nouvelles dimensions du pilotage de l'organisation autour du risque. Notre étude se consacre à la conception des processus métier dirigée par les risques comme une composante à part entière de l'ingénierie d'entreprise. Après avoir fait une synthèse des connaissances sur les univers du risque et des processus, un problème d'intégration de ces connaissances est formulé. Un cadre méthodologique pour le management intégré des risques et des processus est ainsi conçu et décrit. Il repose sur la coordination des cycles de vie de la gestion des risques et de la gestion des processus métier, sur la définition d'un cadre conceptuel unifié permettant d'identifier et de maîtriser les informations échangées entre eux, et enfin sur un langage de modélisation adapté à une description des situations et étendant les capacités d'un outil de modélisation du marché (ARIS Business Architect). Un cas d'études du domaine de la santé vient illustrer le bien fondé de l'application de ce cadre méthodologique sur un cas concret.Enterprise engineering is concerned with the design of projects which aim to improve the structure and behaviour of organisations producing goods and services. It develops approaches based on modelling techniques, particularly on business process modelling in order to assure the quality and the global consistency of the project portfolio. Nowadays, risk consideration in enterprise engineering is a growing importance since the business environment is becoming more and more competitive and unpredictable. In fact, reference frameworks providing guidance for enterprise risk management are developed to tackle this. Our research focuses on risk driven business process design as an integral part of enterprise engineering. After delivering a synthesis of work related to risks and business processes, a research question concerning the integration of both has been addressed. A framework for the integrated management of risks and business processes is suggested. It is based on three components: a coordination of risk and business process management lifecycles, a unified conceptual framework supporting information exchanges between the coordinated lifecycles, and finally a modelling language adapted to the description of risky situations. The later extends the features of a commercial modelling tool (ARIS Business Architect). A case study from the health sector illustrates the foundation of the methodological framework
    corecore