456 research outputs found

    Flat bands with higher Chern number in pyrochlore slabs

    Get PDF
    A large number of recent works point to the emergence of intriguing analogs of fractional quantum Hall states in lattice models due to effective interactions in nearly flat bands with Chern number C=1. Here, we provide an intuitive and efficient construction of almost dispersionless bands with higher Chern numbers. Inspired by the physics of quantum Hall multilayers and pyrochlore-based transition-metal oxides, we study a tight-binding model describing spin-orbit coupled electrons in N parallel kagome layers connected by apical sites forming N-1 intermediate triangular layers (as in the pyrochlore lattice). For each N, we find finite regions in parameter space giving a virtually flat band with C=N. We analytically express the states within these topological bands in terms of single-layer states and thereby explicitly demonstrate that the C=N wave functions have an appealing structure in which layer index and translations in reciprocal space are intricately coupled. This provides a promising arena for new collective states of matter.Comment: 5+3 pages. Title extended, as publishe

    Topological Flat Band Models and Fractional Chern Insulators

    Get PDF
    Topological insulators and their intriguing edge states can be understood in a single-particle picture and can as such be exhaustively classified. Interactions significantly complicate this picture and can lead to entirely new insulating phases, with an altogether much richer and less explored phenomenology. Most saliently, lattice generalizations of fractional quantum Hall states, dubbed fractional Chern insulators, have recently been predicted to be stabilized by interactions within nearly dispersionless bands with non-zero Chern number, CC. Contrary to their continuum analogues, these states do not require an external magnetic field and may potentially persist even at room temperature, which make these systems very attractive for possible applications such as topological quantum computation. This review recapitulates the basics of tight-binding models hosting nearly flat bands with non-trivial topology, C≠0C\neq 0, and summarizes the present understanding of interactions and strongly correlated phases within these bands. Emphasis is made on microscopic models, highlighting the analogy with continuum Landau level physics, as well as qualitatively new, lattice specific, aspects including Berry curvature fluctuations, competing instabilities as well as novel collective states of matter emerging in bands with ∣C∣>1|C|>1. Possible experimental realizations, including oxide interfaces and cold atom implementations as well as generalizations to flat bands characterized by other topological invariants are also discussed.Comment: Invited review. 46 pages, many illustrations and references. V2: final version with minor improvements and added reference

    Quantum Hall Circle

    Full text link
    We consider spin-polarized electrons in a single Landau level on a cylinder as the circumference of the cylinder goes to infinity. This gives a model of interacting electrons on a circle where the momenta of the particles are restricted and there is no kinetic energy. Quantum Hall states are exact ground states for appropriate short range interactions, and there is a gap to excitations. These states develop adiabatically from this one-dimensional quantum Hall circle to the bulk quantum Hall states and further on into the Tao-Thouless states as the circumference goes to zero. For low filling fractions a gapless state is formed which we suggest is connected to the Wigner crystal expected in the bulk.Comment: 12 pages, publishe

    Effective spin chains for fractional quantum Hall states

    Full text link
    Fractional quantum Hall (FQH) states are topologically ordered which indicates that their essential properties are insensitive to smooth deformations of the manifold on which they are studied. Their microscopic Hamiltonian description, however, strongly depends on geometrical details. Recent work has shown how this dependence can be exploited to generate effective models that are both interesting in their own right and also provide further insight into the quantum Hall system. We review and expand on recent efforts to understand the FQH system close to the solvable thin-torus limit in terms of effective spin chains. In particular, we clarify how the difference between the bosonic and fermionic FQH states, which is not apparent in the thin-torus limit, can be seen at this level. Additionally, we discuss the relation of the Haldane-Shastry chain to the so-called QH circle limit and comment on its significance to recent entanglement studies.Comment: 6 pages, 5 figures. Written for a Special Issue on Foundations of Computational and Theoretical Nanoscience in Journal of Computational and Theoretical Nanoscience (proceedings for nanoPHYS'09 in Tokyo

    The Pfaffian quantum Hall state made simple--multiple vacua and domain walls on a thin torus

    Full text link
    We analyze the Moore-Read Pfaffian state on a thin torus. The known six-fold degeneracy is realized by two inequivalent crystalline states with a four- and two-fold degeneracy respectively. The fundamental quasihole and quasiparticle excitations are domain walls between these vacua, and simple counting arguments give a Hilbert space of dimension 2n−12^{n-1} for 2n−k2n-k holes and kk particles at fixed positions and assign each a charge ±e/4\pm e/4. This generalizes the known properties of the hole excitations in the Pfaffian state as deduced using conformal field theory techniques. Numerical calculations using a model hamiltonian and a small number of particles supports the presence of a stable phase with degenerate vacua and quarter charged domain walls also away from the thin torus limit. A spin chain hamiltonian encodes the degenerate vacua and the various domain walls.Comment: 4 pages, 1 figure. Published, minor change
    • …
    corecore