37 research outputs found

    Identification of delays and discontinuity points of unknown systems by using synchronization of chaos

    Full text link
    In this paper we present an approach in which synchronization of chaos is used to address identification problems. In particular, we are able to identify: (i) the discontinuity points of systems described by piecewise dynamical equations and (ii) the delays of systems described by delay differential equations. Delays and discontinuities are widespread features of the dynamics of both natural and manmade systems. The foremost goal of the paper is to present a general and flexible methodology that can be used in a broad variety of identification problems.Comment: 11 pages, 3 figure

    On the birth of limit cycles for non-smooth dynamical systems

    Get PDF
    The main objective of this work is to develop, via Brower degree theory and regularization theory, a variation of the classical averaging method for detecting limit cycles of certain piecewise continuous dynamical systems. In fact, overall results are presented to ensure the existence of limit cycles of such systems. These results may represent new insights in averaging, in particular its relation with non smooth dynamical systems theory. An application is presented in careful detail

    Publication/Subscription/Member Data

    No full text

    Quasi-Steady Nonlinear Pitching Oscillations in Transonic Flight

    No full text
    corecore