337 research outputs found

    Le coefficient de solubilité du gaz carbonique dans les vins

    Get PDF
    La partie expérimentale de cette étude concerne la mesure des pressions partielles de CO2, d'échantillons de vins saturés en gaz, à différentes températures. Une telle mesure a pu être réalisée avec précision, grâce à la mise en oeuvre d'une électrode spécifique.A partir des valeurs obtenues, nous avons établi l'expression mathématique traduisant la variation de a en fonction du degré alcoolique, de la teneur en sucres et de la température. Il est ainsi possible de calculer le coefficient de solubilité du CO2 dans les vins avec des valeurs plus proches des valeurs expérimentales que celles données par la formule d'AGABALIANTZ et dans une zone de température (inférieure à 10°C et supérieure à 30°C) où cette formule n'est plus applicable.Afin de simplifier l'utilisation de ce résultat, nous avons construit des abaques qui donnent simplement et sans calcul, la valeur de a lorsqu'on connaît le degré alcoolique du vin, sa teneur en sucres et sa température.The solubility coefficient of carbonic acid in winesThe solubility of CO2 in wines depends on several factors which are especially the alcoholic degree and sugar concentration and above all the temperature. It is possible to calculate the coefficient of solubility with the AGABALIANTZ formula which is a function of the alcoholic degree, amount of sugars and temperature. But this formula is only available from 10°C to 30°C.We propound a new formula which permits the calculation of the solubility at any temperature. It has been compiled from the results of experiments in which the partial pressure of wines saturated with CO2 at several temperatures, alcoholic degree and apressure of wines saturated with CO2 at several temperatures, alcoholic degree and amount of sugars were measured.To simplify the utilization of these results in practice, we have set up two graphs; a direct lecture provides, without calculation, the coefficient of solubility of CO2 in wines of known alcoholic degree, sugar concentration and temperature

    A simple cultural method for the presumptive detection of the yeasts Brettanomyces/Dekkera in wines

    Get PDF
    The development of a simple and reliable procedure, compatible with routine use in wineries, for the presumptive detection of Brettanomyces/Dekkera from wine and wine-environment samples. Methods and Results: The method of detection of these yeasts employs a selective enrichment medium. The medium contains glucose (10 g l⁻¹1) as carbon and energy source, cycloheximide (20 mg l⁻¹1) to prevent growth of Saccharomyces, chloramphenicol (200 mg l⁻¹1) to prevent growth of bacteria and p-coumaric acid (20 mg l⁻¹1) as the precursor for the production of 4-ethyl-phenol. After the inoculation with wine, the medium is monitored by visual inspection of turbidity and by periodic olfactive analysis. Contaminated wines will develop visible turbidity in the medium and will produce the 4-ethyl-phenol off-odour, which can be easily detected by smelling. Conclusions: A selective enrichment liquid medium was developed to differentially promote the growth and activity of Brettanomyces/Dekkera. The method is simple to execute, employing a simple-to-prepare medium and a periodic olfactive detection. Significance and Impact of the Study: The characteristics of the procedure make it particularly applicable in a wine-making environment thus presenting important advantages to the wine industry

    Evidence of Two Functionally Distinct Ornithine Decarboxylation Systems in Lactic Acid Bacteria

    Get PDF
    Biogenic amines are low-molecular-weight organic bases whose presence in food can result in health problems. The biosynthesis of biogenic amines in fermented foods mostly proceeds through amino acid decarboxylation carried out by lactic acid bacteria (LAB), but not all systems leading to biogenic amine production by LAB have been thoroughly characterized. Here, putative ornithine decarboxylation pathways consisting of a putative ornithine decarboxylase and an amino acid transporter were identified in LAB by strain collection screening and database searches. The decarboxylases were produced in heterologous hosts and purified and characterized in vitro, whereas transporters were heterologously expressed in Lactococcus lactis and functionally characterized in vivo. Amino acid decarboxylation by whole cells of the original hosts was determined as well. We concluded that two distinct types of ornithine decarboxylation systems exist in LAB. One is composed of an ornithine decarboxylase coupled to an ornithine/putrescine transmembrane exchanger. Their combined activities results in the extracellular release of putrescine. This typical amino acid decarboxylation system is present in only a few LAB strains and may contribute to metabolic energy production and/or pH homeostasis. The second system is widespread among LAB. It is composed of a decarboxylase active on ornithine and L-2,4-diaminobutyric acid (DABA) and a transporter that mediates unidirectional transport of ornithine into the cytoplasm. Diamines that result from this second system are retained within the cytosol.

    Complexity and dynamics of the winemaking bacterial communities in berries, musts, and wines from apulian grape cultivars through time and space

    Get PDF
    Currently, there is very little information available regarding the microbiome associated with the wine production chain. Here, we used an amplicon sequencing approach based on high-throughput sequencing (HTS) to obtain a comprehensive assessment of the bacterial community associated with the production of three Apulian red wines, from grape to final product. The relationships among grape variety, the microbial community, and fermentation was investigated. Moreover, the winery microbiota was evaluated compared to the autochthonous species in vineyards that persist until the end of the winemaking process. The analysis highlighted the remarkable dynamics within the microbial communities during fermentation. A common microbial core shared among the examined wine varieties was observed, and the unique taxonomic signature of each wine appellation was revealed. New species belonging to the genus Halomonas were also reported. This study demonstrates the potential of this metagenomic approach, supported by optimized protocols, for identifying the biodiversity of the wine supply chain. The developed experimental pipeline offers new prospects for other research fields in which a comprehensive view of microbial community complexity and dynamics is desirable.Peer ReviewedPostprint (published version

    Ecology and technological capability of lactic acid bacteria isolated during Grillo grape vinification in the Marsala production area.

    Get PDF
    Grapes of “Grillo” variety, used to produce Marsala wine, were harvested from five vineyards different for climatic and agronomic parameters, in order to obtain a first mapping of lactic acid bacteria (LAB) inhabiting the production area. Marsala base wine production was followed at large-scale and two experimental vinifications, different for lysozyme and SO2 concentration and combination, were carried out at pilot-plant scale. LAB communities and conventional chemical parameters were periodically analysed. LAB were found on grapes at an average concentration of about 102 CFU g-1 which decreased during the transformation process. A total of 146 colonies were collected, but only 35 were recognized as presumptive LAB. On the basis of phenotypic differences and isolation source, 16 isolates were then subjected to genotypic identification and gathered into the following species: Lactococcus lactis subsp. lactis, Lactococcus lactis subsp. cremoris, Enterococcus faecium, Leuconostoc fallax and Sporalactobacillus nakayamae subsp. nakayamae. Lactococcus lactis subsp. lactis strains was the species most frequently isolated during winemaking showing the highest resistance to SO2 and lysozyme

    Microbial Contribution to Wine Aroma and Its Intended Use for Wine Quality Improvement

    Get PDF
    Wine is a complex matrix that includes components with different chemical natures, the volatile compounds being responsible for wine aroma quality. The microbial ecosystem of grapes and wine, including Saccharomyces and non-Saccharomyces yeasts, as well as lactic acid bacteria, is considered by winemakers and oenologists as a decisive factor influencing wine aroma and consumer’s preferences. The challenges and opportunities emanating from the contribution of wine microbiome to the production of high quality wines are astounding. This review focuses on the current knowledge about the impact of microorganisms in wine aroma and flavour, and the biochemical reactions and pathways in which they participate, therefore contributing to both the quality and acceptability of wine. In this context, an overview of genetic and transcriptional studies to explain and interpret these effects is included, and new directions are proposed. It also considers the contribution of human oral microbiota to wine aroma conversion and perception during wine consumption. The potential use of wine yeasts and lactic acid bacteria as biological tools to enhance wine quality and the advent of promising advice allowed by pioneering -omics technologies on wine research are also discussed

    Cell membrane damage induced by phenolic acids on wine lactic acid bacteria

    Get PDF
    The aim of this work was to investigate the effect of phenolic acids on cell membrane permeability of lactic acid bacteria from wine. Several phenolic acids were tested for their effects on the cell membrane of Oenococcus oeni and Lactobacillus hilgardii by measuring potassium and phosphate efflux, proton influx and by assessing culture viability employing a fluorescence technique based on membrane integrity. The experimental results indicate that hydroxycinnamic acids (p-coumaric, caffeic and ferulic acids) induce greater ion leakages and higher proton influx than hydroxybenzoic acids (p-hydroxibenzoic, protocatechuic, gallic, vanillic, and syringic acids). Among the hydroxycinnamic acids, p-coumaric acid showed the strongest effect. Moreover, the exposure of cells to phenolic acids caused a significant decrease in cell culture viability, as measured by the fluorescence assay, in both tested strains. The results agree with previous results obtained in growth experiments with the same strains. Generally, phenolic acids increased the cell membrane permeability in lactic acid bacteria from wine. The different effects of phenolic acids on membrane permeability could be related to differences in their structure and lipophilic character

    Bioactive Molecules Released in Food by Lactic Acid Bacteria: Encrypted Peptides and Biogenic Amines

    Get PDF
    Lactic acid bacteria (LAB) can produce a huge amount of bioactive compounds. Since their elective habitat is food, especially dairy but also vegetal food, it is frequent to find bioactive molecules in fermented products. Sometimes these compounds can have adverse effects on human health such as biogenic amines (tyramine and histamine), causing allergies, hypertensive crises, and headache. However, some LAB products also display benefits for the consumers. In the present review article, the main nitrogen compounds produced by LAB are considered. Besides biogenic amines derived from the amino acids tyrosine, histidine, phenylalanine, lysine, ornithine, and glutamate by decarboxylation, interesting peptides can be decrypted by the proteolytic activity of LAB. LAB proteolytic system is very efficient in releasing encrypted molecules from several proteins present in different food matrices. Alpha and beta-caseins, albumin and globulin from milk and dairy products, rubisco from spinach, beta-conglycinin from soy and gluten from cereals constitute a good source of important bioactive compounds. These encrypted peptides are able to control nutrition (mineral absorption and oxidative stress protection), metabolism (blood glucose and cholesterol lowering) cardiovascular function (antithrombotic and hypotensive action), infection (microbial inhibition and immunomodulation) and gut-brain axis (opioids and anti-opioids controlling mood and food intake). Very recent results underline the role of food-encrypted peptides in protein folding (chaperone-like molecules) as well as in cell cycle and apoptosis control, suggesting new and positive aspects of fermented food, still unexplored. In this context, the detailed (transcriptomic, proteomic, and metabolomic) characterization of LAB of food interest (as starters, biocontrol agents, nutraceuticals, and probiotics) can supply a solid evidence-based science to support beneficial effects and it is a promising approach as well to obtain functional food. The detailed knowledge of the modulation of human physiology, exploiting the health-promoting properties of fermented food, is an open field of investigation that will constitute the next challenge
    corecore