173 research outputs found

    THE EFFECTS OF TEMPERATURE DEPENDENT VISCOSITY AND VISCOUS DISSIPATION ON MHD CONVECTION FLOW FROM AN ISOTHERMAL HORIZONTAL CIRCULAR CYLINDER IN THE PRESENCE OF STRESS WORK AND HEAT GENERATION

    Get PDF
    Temperature dependent viscosity and Viscous Dissipation effects are considered on hydromagnetic natural convection flow from horizontal circular cylinder immersed in an electrically conducting fluid with viscosity proportional to a linear function of temperature in the presence of stress work and heat generation. The partial differential governing equations are transformed to dimensionless forms. The numerical computations are carried out for several values of physical parameters involved in the transformed equations. The resulting nonlinear system of partial differential equations is solved numerically by Keller box method which is an implicit finite difference technique with Newton's linearization method. The features of the flow and heat transfer characteristics for different values of the governing parameters are analyzed and discussed. To support the accuracy of the numerical results, a comparison is made with known results from the open literature for some particular cases of the present study and the results are found to be in good agreement

    Application of differential transform method to unsteady free convective heat transfer of a couple stress fluid over a stretching sheet

    Get PDF
    In the present article, the transient rheological boundary layer flow over a stretching sheet with heat transfer is investigated, a topic of relevance to non-Newtonian thermal materials processing. Stokes couple stress model is deployed to simulate non-Newtonian characteristics. Similarity transformations are utilized to convert the governing partial differential equations into nonlinear ordinary differential equations with appropriate wall and free stream boundary conditions. The non-dimensional boundary value problem emerging is shown to be controlled by a number of key thermophysical and rheological parameters, namely the rheological couple stress parameter, unsteadiness parameter, Prandtl number (Pr), buoyancy parameter. The semi-analytical Differential Transform Method (DTM) is used to solve the reduced nonlinear coupled ordinary differential boundary value problem. A numerical solution is also obtained via the MATLAB built in solver ‘bvp4c’ to validate the results. Further validation with published results from the literature is included. Fluid velocity is enhanced with increasing couple stress parameter whereas it is decreased with unsteadiness parameter. Temperature is elevated with couple stress parameter whereas it is initially reduced with unsteadiness parameter. The flow is accelerated with increasing positive buoyancy parameter (for heating of the fluid) whereas it is decelerated with increasing negative buoyancy parameter (cooling of the fluid). Temperature and thermal boundary layer thickness are boosted with increasing positive values of buoyancy parameter. Increasing Prandtl number decelerates the flow, reduces temperatures, increases momentum boundary layer thickness and decreases thermal boundary layer thickness. Excellent accuracy is achieved with the DTM approach

    Effect of temperature-dependent viscosity on entropy generation in transient viscoelastic polymeric fluid flow from an isothermal vertical plate

    Get PDF
    A numerical investigation of the viscosity variation effect upon entropy generation in time-dependent viscoelastic polymeric fluid flow and natural convection from a semi-infinite vertical plate is described. The Reiner-Rivlin second order differential model is utilized which can predict normal stress differences in dilute polymers. The conservation equations for heat, momentum and mass are normalized with appropriate transformations and the resulting unsteady nonlinear coupled partial differential equations are elucidated with the well-organized unconditionally stable implicit Crank-Nicolson finite difference method subject to suitable initial and boundary conditions. Average values of wall shear stress and Nusselt number, second-grade fluid flow variables conferred for distinct values of physical parameters. Numerical solutions are presented to examine the entropy generation and Bejan number along with their contours. The outcomes show that entropy generation parameter and Bejan number both increase with increasing values of group parameter and Grashof number. The present study finds applications in geothermal engineering, petroleum recovery, oil extraction and thermal insulation, etc
    corecore