185 research outputs found

    The transition towards a sustainable energy system in Europe: What role can North Africa's solar resources play?

    Get PDF
    Securing energy supply and speeding up the transition towards a reliable, sustainable, low-carbon energy system are among the major current and future challenges facing Europe. Importing dispatchable solar electricity from North Africa is considered as a potential and attractive option. Nevertheless, as things currently stand, the European Commission focuses mainly on the exploitation of the existing wind power potential in the North Sea, largely ignoring the solar power potential in the Sahara region of North Africa. After discussing the major challenges and issues facing Europe to achieve the assigned ambitious objectives, the paper emphasises the importance of North Africa's solar resources in helping Europe to successfully address the challenge of decarbonising its electricity system, in particular with regards to the security of supply and sustainability. Within these two major challenges, the paper explores the issues of access, barriers and opportunities. The paper highlights why the EU’s energy and climate goals will not be achievable without adequate grid expansion and grid-scale energy storage facilities, as well as other innovative measures to manage demand and ensure a secure energy supply. In this respect, the paper shows how the import of dispatchable electricity from North Africa via specific HVDC links could play a key role in helping the EU achieve its energy targets in a cost effective way without recourse to significant investments in transmission infrastructure and storage facilities. The paper then attempts to identify and analyze the main barriers that continue to inhibit the export of solar electricity from North Africa to Europe. Finally, to make the project more attractive and achievable in the near future, the paper proposes a systematic approach for setting up energy import scenarios. A promising import scenario is presented where energy import via Italy is shown to be a more viable and effective solution than via Spain.Peer reviewe

    Wide-area oscillation damping in low-inertia grids under time-varying communication delays

    Get PDF
    Wide-Area Control (WAC) can be efficiently used for oscillation damping in power systems. However, to implement a WAC, a communication network is required to transmit signals between the generation units and the control center. In turn, this makes WAC vulnerable to time-varying communication delays that, if not appropriately considered in the control design, can destabilize the system. Moreover, with the increasing integration of renewable energy resources into the grid, usually interfaced via power electronics, power system dynamics are becoming drastically faster and making WAC more vulnerable to communication delays. In this paper, we propose a design procedure for a delay-robust wide-area oscillation damping controller for low-inertia systems. Its performance is illustrated on the well-known Kundur two-area system. The results indicate that the obtained WAC successfully improves the oscillation damping while ensuring robustness against time-varying communication delays

    Certification prerequisites for activities related to the trading of demand response resources

    Full text link
    Certification according to international standards brings many benefits to the society, including technical, economic and environmental aspects. In this context, this paper highlights the benefits of certification of Demand Response, including the additional credibility which provides to the trading of flexibility and higher confidence between different players. The consequence is a dynamic environment which facilitates the market acceptance of Demand Response services and products, providing significant benefits to providers and users of such services. A methodology for the systematic certification of different activities related to the transaction of Demand Response resources has been developed and it is presented here. In particular, three types of certificate have been specified, considering the certification of the entity providing the resource (Demand Response Provider), the contractual framework between the provider and the requester (Demand Response Product) and the physical platform to enable and guarantee such transaction (Demand Response Energy Service Trader). The results of this paper may help regulators and standardization bodies in the design and specification of a future norm to allow the certification of the above-mentioned activities, or a further development of existing regulation for certification of energy efficiency systems (like ISO 50001), where certification of Demand Response activities could be complementary.This work was completed in the framework of the DRIP project (11ENV/DE/340) co-funded by the European Commission through the LIFE Environment Programme. The authors deeply thank all the participants in the project for their help and support that made possible this work.Alcázar-Ortega, M.; Calpe Esteve, CM.; Theisen, T.; Rodríguez-García, J. (2015). Certification prerequisites for activities related to the trading of demand response resources. Energy. 93:705-715. doi:10.1016/j.energy.2015.09.082S7057159

    Uncertainty analysis using Bayesian Model Averaging: a case study of input variables to energy models and inference to associated uncertainties of energy scenarios

    Get PDF
    Background Energy models are used to illustrate, calculate and evaluate energy futures under given assumptions. The results of energy models are energy scenarios representing uncertain energy futures. Methods The discussed approach for uncertainty quantification and evaluation is based on Bayesian Model Averaging for input variables to quantitative energy models. If the premise is accepted that the energy model results cannot be less uncertain than the input to energy models, the proposed approach provides a lower bound of associated uncertainty. The evaluation of model-based energy scenario uncertainty in terms of input variable uncertainty departing from a probabilistic assessment is discussed. Results The result is an explicit uncertainty quantification for input variables of energy models based on well-established measure and probability theory. The quantification of uncertainty helps assessing the predictive potential of energy scenarios used and allows an evaluation of possible consequences as promoted by energy scenarios in a highly uncertain economic, environmental, political and social target system. Conclusions If societal decisions are vested in computed model results, it is meaningful to accompany these with an uncertainty assessment. Bayesian Model Averaging (BMA) for input variables of energy models could add to the currently limited tools for uncertainty assessment of model-based energy scenarios
    corecore