34 research outputs found

    BKS Theorem and Bell\u27s Theorem in 16 Dimensions

    Get PDF
    This project gives two new proofs of the Bell-Kochen-Specker (BKS) Theorem for a system of four qubits: A proof based on 11 observables for a four-qubit system and a second proof based on 80 states and 265 orthogonal bases in a 16-dimensional state space derived from the previous observables. These proofs can be converted into proofs of Bell\u27s Theorem by introducing four more qubits that are entangled with the previous qubits in a suitable fashion

    Climate Forcing Datasets for Agricultural Modeling: Merged Products for Gap-Filling and Historical Climate Series Estimation

    Get PDF
    The AgMERRA and AgCFSR climate forcing datasets provide daily, high-resolution, continuous, meteorological series over the 1980-2010 period designed for applications examining the agricultural impacts of climate variability and climate change. These datasets combine daily resolution data from retrospective analyses (the Modern-Era Retrospective Analysis for Research and Applications, MERRA, and the Climate Forecast System Reanalysis, CFSR) with in situ and remotely-sensed observational datasets for temperature, precipitation, and solar radiation, leading to substantial reductions in bias in comparison to a network of 2324 agricultural-region stations from the Hadley Integrated Surface Dataset (HadISD). Results compare favorably against the original reanalyses as well as the leading climate forcing datasets (Princeton, WFD, WFD-EI, and GRASP), and AgMERRA distinguishes itself with substantially improved representation of daily precipitation distributions and extreme events owing to its use of the MERRA-Land dataset. These datasets also peg relative humidity to the maximum temperature time of day, allowing for more accurate representation of the diurnal cycle of near-surface moisture in agricultural models. AgMERRA and AgCFSR enable a number of ongoing investigations in the Agricultural Model Intercomparison and Improvement Project (AgMIP) and related research networks, and may be used to fill gaps in historical observations as well as a basis for the generation of future climate scenarios

    Implications of climate mitigation for future agricultural production

    Get PDF
    Climate change is projected to negatively impact biophysical agricultural productivity in much of the world. Actions taken to reduce greenhouse gas emissions and mitigate future climate changes, are thus of central importance for agricultural production. Climate impacts are, however, not unidirectional; some crops in some regions (primarily higher latitudes) are projected to benefit, particularly if increased atmospheric carbon dioxide is assumed to strongly increase crop productivity at large spatial and temporal scales. Climate mitigation measures that are implemented by reducing atmospheric carbon dioxide concentrations lead to reductions both in the strength of climate change and in the benefits of carbon dioxide fertilization. Consequently, analysis of the effects of climate mitigation on agricultural productivity must address not only regions for which mitigation is likely to reduce or even reverse climate damages. There are also regions that are likely to see increased crop yields due to climate change, which may lose these added potentials under mitigation action. Comparing data from the most comprehensive archive of crop yield projections publicly available, we find that climate mitigation leads to overall benefits from avoided damages at the global scale and especially in many regions that are already at risk of food insecurity today. Ignoring controversial carbon dioxide fertilization effects on crop productivity, we find that for the median projection aggressive mitigation could eliminate ~81% of the negative impacts of climate change on biophysical agricultural productivity globally by the end of the century. In this case, the benefits of mitigation typically extend well into temperate regions, but vary by crop and underlying climate model projections. Should large benefits to crop yields from carbon dioxide fertilization be realized, the effects of mitigation become much more mixed, though still positive globally and beneficial in many food insecure countries

    Demand Response Programs in the Greater Boston Area

    Get PDF
    The goal of this IQP is to investigate the economic benefits and the societal impact of peak load reduction(PLR) devices. Such devices are meant to reduce the peak demand of electricity. They can be installed in order to cycle air conditioners, swimming pool pumps, water heaters, and refrigerators. In helping to significantly curb the amount of energy consumed they help to reduce pollution and to postpone the construction of more power plants. To test the public acceptability of Demand Response(DR) programs, a mail survey was distributed to a representative sample of 914 homeowners in the Greater Boston metropolitan area. the information gathered from the surveys will help regional transmission organizations(RTOs) determine the affordability of implementing DR programs in the future

    The Parallel System for Integrating Impact Models and Sectors (pSIMS)

    Get PDF
    We present a framework for massively parallel climate impact simulations: the parallel System for Integrating Impact Models and Sectors (pSIMS). This framework comprises a) tools for ingesting and converting large amounts of data to a versatile datatype based on a common geospatial grid; b) tools for translating this datatype into custom formats for site-based models; c) a scalable parallel framework for performing large ensemble simulations, using any one of a number of different impacts models, on clusters, supercomputers, distributed grids, or clouds; d) tools and data standards for reformatting outputs to common datatypes for analysis and visualization; and e) methodologies for aggregating these datatypes to arbitrary spatial scales such as administrative and environmental demarcations. By automating many time-consuming and error-prone aspects of large-scale climate impacts studies, pSIMS accelerates computational research, encourages model intercomparison, and enhances reproducibility of simulation results. We present the pSIMS design and use example assessments to demonstrate its multi-model, multi-scale, and multi-sector versatility

    A climate generator for agricultural planning in southeastern South America

    Get PDF
    A method is described for the generation of climate scenarios in a form suitable for driving agricultural models. The scenarios are tailored to the region in southeastern South America bounded by 25–40° S, 45–65° W, denoted here as SESA. SESA has been characterized by increasing summer precipitation, particularly during the late 20th century, which, in the context of favorable market conditions, has enabled increases in agricultural production. Since about year 2000, however, the upward tendency appears to have slowed or possibly stopped, raising questions about future climate inputs to regional agricultural yields. The method is not predictive in the deterministic sense, but rather attempts to characterize uncertainty in near-term future climate, taking into account both forced trends and unforced, natural climate fluctuations. It differs from typical downscaling methods in that GCM information is utilized only at the regional scale, subregional variability being modeled based on the observational record. Output, generated on the monthly time scale, is disaggregated to daily values with a weather generator and used to drive soybean yields in the crop model DSSAT-CSM, for which preliminary results are discussed. The simulations produced permit assessment of the interplay between long-range trends and near-term climate variability in terms of agricultural production

    New Examples of Kochen-Specker Type Configurations on Three Qubits

    Full text link
    A new example of a saturated Kochen-Specker (KS) type configuration of 64 rays in 8-dimensional space (the Hilbert space of a triple of qubits) is constructed. It is proven that this configuration has a tropical dimension 6 and that it contains a critical subconfiguration of 36 rays. A natural multicolored generalisation of the Kochen-Specker theory is given based on a concept of an entropy of a saturated configuration of rays.Comment: 24 page

    Bayesian learning of models for estimating uncertainty in alert systems: application to air traffic conflict avoidance

    Get PDF
    Alert systems detect critical events which can happen in the short term. Uncertainties in data and in the models used for detection cause alert errors. In the case of air traffic control systems such as Short-Term Conflict Alert (STCA), uncertainty increases errors in alerts of separation loss. Statistical methods that are based on analytical assumptions can provide biased estimates of uncertainties. More accurate analysis can be achieved by using Bayesian Model Averaging, which provides estimates of the posterior probability distribution of a prediction. We propose a new approach to estimate the prediction uncertainty, which is based on observations that the uncertainty can be quantified by variance of predicted outcomes. In our approach, predictions for which variances of posterior probabilities are above a given threshold are assigned to be uncertain. To verify our approach we calculate a probability of alert based on the extrapolation of closest point of approach. Using Heathrow airport flight data we found that alerts are often generated under different conditions, variations in which lead to alert detection errors. Achieving 82.1% accuracy of modelling the STCA system, which is a necessary condition for evaluating the uncertainty in prediction, we found that the proposed method is capable of reducing the uncertain component. Comparison with a bootstrap aggregation method has demonstrated a significant reduction of uncertainty in predictions. Realistic estimates of uncertainties will open up new approaches to improving the performance of alert systems

    The Global Gridded Crop Model Intercomparison: Data and modeling protocols for Phase 1 (v1.0)

    Get PDF
    We present protocols and input data for Phase 1 of the Global Gridded Crop Model Intercomparison, a project of the Agricultural Model Intercomparison and Improvement Project (AgMIP). The project includes global simulations of yields, phenologies, and many land-surface fluxes using 12–15 modeling groups for many crops, climate forcing data sets, and scenarios over the historical period from 1948 to 2012. The primary outcomes of the project include (1) a detailed comparison of the major differences and similarities among global models commonly used for large-scale climate impact assessment, (2) an evaluation of model and ensemble hindcasting skill, (3) quantification of key uncertainties from climate input data, model choice, and other sources, and (4) a multi-model analysis of the agricultural impacts of large-scale climate extremes from the historical record

    Implications of climate mitigation for future agricultural production

    Get PDF
    Climate change is projected to negatively impact biophysical agricultural productivity in much of the world. Actions taken to reduce greenhouse gas emissions and mitigate future climate changes, are thus of central importance for agricultural production. Climate impacts are, however, not unidirectional; some crops in some regions (primarily higher latitudes) are projected to benefit, particularly if increased atmospheric carbon dioxide is assumed to strongly increase crop productivity at large spatial and temporal scales. Climate mitigation measures that are implemented by reducing atmospheric carbon dioxide concentrations lead to reduction both in the strength of climate change and in the benefits of carbon dioxide fertilization. Consequently, analysis of the effects of climate mitigation on agricultural productivity must address not only regions for which mitigation is likely to reduce or even reverse climate damage. There are also regions that are likely to see increased crop yields due to climate change, which may lose these added potentials under mitigation action. Comparing data from the most comprehensive archive of crop yield projections publicly available, we find that climate mitigation leads to overall benefits from avoided damages at the global scale and especially in many regions that are already at risk of food insecurity today. Ignoring controversial carbon dioxide fertilization effects on crop productivity, we find that for the median projection aggressive mitigation could eliminate ~81% of the negative impacts of climate change on biophysical agricultural productivity globally by the end of the century. In this case, the benefits of mitigation typically extend well into temperate regions, but vary by crop and underlying climate mode projections. Should large benefits to crop yields from carbon dioxide fertilization be realized, the effects of mitigation become much more mixed, though still positive globally and beneficial in many food insecure countries
    corecore