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Figure S1: Spatial delineation of Food Production Units (FPU) for which climate change 
impacts are computed here. For aggregation of grid-specific crop yield simulations, we 
assume static cropland areas based on MIRCA2000 (Portmann et al., 2010). Colors have 
no meaning but simply delineate the spatial units. 
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Figure S2: As figure 1 but for absolute changes in production (Pcal) per FPU. 
  



4 

 

 
 

 

Figure S3: Total production of maize, wheat, rice and soy (measured in Pcal) for current 
cropland areas for RCP 8.5. Blue bars display the full GCMxGGCM ensemble for the 
assumption of fully effective CO2 fertilization. Yellow bars are as the blue bars, but for 
one GCM (HadGEM2-ES) only. Red bars are as the yellow bars, but for the assumption of 
ineffective CO2 fertilization. Bars display the interquartile range (IQR) and whiskers 
extend to the max/min of the ensemble, ignoring outlier points that lie further than 1.5 
time IQR beyond the IQR Outliers are depicted as crosses. Positive outliers are from LPJ-
GUESS which typically has the least strong climate change impact projections strongest 
response to CO2 fertilization and negative outliers are typically from PEGASUS. 
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Figure S4: As figure S3 but for RCP 2.6. 
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Figure S5: Effects of climate mitigation on agricultural productivity as in figure 3, but 
assuming no effectiveness of CO2 fertilization. This figure is based on only one GCM 
(HadGEM2-ES) for limited data availability for the assumption of ineffective CO2 
fertilization. Green (avoided damages) and blue (gained potentials) areas profit from 
climate mitigation. 
 



7 

 

 
Figure S6: The share of GGCM-induced uncertainty per FPU in the full scenario ensemble 
assuming full CO2 fertilization effectiveness (5 GCMs x 6 GGCMs x 2 RCPs) as also 
presented in Table S4 for the global aggregation. The CO2-induced uncertainty is not 
included here, as this ensemble is only available for the assumption on full CO2 
fertilization effectiveness.  



8 

 

 
Figure S7: Effects of CO2 fertilization on agricultural productivity for the median 
projection of all GGCMs for HadGEM2-ES only. Panel A corresponds to panel A in Figure 
1 but is for HadGEM2-ES only, panel C corresponds to panel A in figure 2 but also for 
HadGEM2-ES only. The panels on the right (B, D) show the climate change impacts on 
agricultural productivity if CO2 fertilization is assumed to be inefficient under RCP 8.5 
(top) and RCP 2.6 (bottom). Values are computed at FPU level but are displayed only for 
regions currently cropped.  
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Figure 8: The share of CO2-induced uncertainty per FPU in the HadGEM2-ES scenario 
ensemble (6 GGCMs x 2 RCPs x 2 CO2) as also presented in Table S3 for the global 
aggregation. The GCM-induced uncertainty is not included here, as this ensemble is only 
available for HadGEM2-ES. 
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Table S1: Model characteristics and setup. Modified from (Rosenzweig et al., 2014) 
 EPIC GEPIC LPJ-GUESS LPJmL pDSSAT PEGASUS 
Type1 Site-based Site-based Ecosystem Ecosystem Site-based Ecosystem 
CO2 
effects2 

RUE, TE RUE, TE LF, SC LF, SC RUE (for 
w heat, rice, 
maize) and 
LF (for soy)  

RUE 

Stresses3 W, T, H, A, N, 
P, BD, AL 

W, T, H, A, N, 
P, BD, AL 

W, T W, T W, T, H, A, N W, T, H, N, 
P, K 

Fertilizer 
application
4 

automatic N 
input (max 
200 kg ha-1 
yr-1) 
PK (national 
stat. IFA) 
dynamic 
application 

NP (national 
stat: 
FertiSTAT), 
dynamic 
application 

na na SPAM, 
dynamic 
application 

NPK 
(national 
stat. IFA), 
annual 
application 

Calibration 
 
Parameter
s 
 

Site-specif ic 
(EPIC 0810) 
Na 

Site-specif ic 
and global 
F HIpot (for 
maize and rice) 

Uncalibrated 
 
na 

Global 
 
LAImax HI 
αa 

Site-specif ic 
(DSSAT) 
Na 

Global 
 
β  

Evaluation (Izaurralde 
et al., 2006; 
Schneider et 
al., 2007; 
Balkovič et 
al., 2013; 
Mitter et al., 
2015; 
Williams et 
al., 1989) 

(Liu et al., 
2007; Gaiser 
et al., 2010; 
Folberth et 
al., 2012; 
Izaurralde et 
al., 2006; Liu, 
2009) 

(Bodin et 
al., 2014; 
Lindeskog 
et al., 2013) 

(Bondeau 
et al., 
2007; 
Fader et 
al., 2010; 
Waha et 
al., 2013; 
Waha et 
al., 2012) 

(Jones  et 
al., 2003 
and 
references 
therein; 
Glotter et 
al., 2014) 

(Deryng et 
al., 2014; 
Deryng et 
al., 2011) 

Notes for abbreviations (na = not applicable): 
(1) site-base crop model; GAEZ: Global agro-ecological zones; ecosystem: global ecosystem model 
(2) Elevated CO2 effects: LF: Leaf-level photosynthesis (via rubisco or quantum-efficiency and leaf-
photosynthesis saturation; RUE: Radiation use efficiency; TE: Transpiration efficiency; SC: stomatal 
conductance 
(3) W: water stress; T: temperature stress; H: specific-heat stress; A: oxygen stress; N: nitrogen stress; P: 
phosphorus stress; K: potassium stress; BD: bulk density; AL: aluminum stress (based on pH and base 
saturation) 
(4) Fertilizer application, timing of application; NPK annual application 
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Table S2: Models’ key physiological process implementations. Modified from 
(Rosenzweig et al., 2014) 
 

Notes for abbreviations (NA where not applicable): 
(1) D: Dynamic simulation based on development and growth processes; PS: prescribed shape of LAI curve as 
function of phenology, modified by water stress & low productivity 
(2) S: Simple approach: D: Detailed approach 
(3) RUE: Simple (descriptive) radiation use efficiency approach; P-R: Detailed (explanatory) gross photosynthesis – 
respiration 
(4) Yield formation depending on: HI: fixed harvest – index; B: total (above – ground) biomass; Gn: number of 
grains and grain growth rate; Prt: partitioning during reproductive stages; HIws: HI modified by water stress 
(5) W: water stress; T: temperature stress; H: specific-heat stress; A: oxygen stress; N: nitrogen stress; P: 
phosphorus stress; K: potassium stress; BD: bulk density; AL: aluminum stress (based on pH and base saturation) 
(6) V: vegetative (source); R: reproductive organ (sink); F: number of grain (pod) set during the flowering period 
(7) Crop phenology is a function of: T: temperature; DL: photoperiod (day length); O: other water/nutrient stress 
effects considered; V: vernalization; HU: Heat unit index 
(8) E: ratio of supply to demand of water; S: soil available water in root zone 
(9) PM: Penman – Monteith; PT: Priestley –Taylor 
(10) number of soil layers 
(11) LIN: linear; EXP: exponential; NON: no roots-just soil depth zone; W: actuals water depends on water 
availability in each soil layer 
(12) C model; N model; P(x): x number of organic matter pools; B(x): x number of microbial biomass pools 
(13) Elevated CO2 effects: LF: Leaf-level photosynthesis (via rubisco or quantum-efficiency and leaf-photosynthesis 
saturation; RUE: Radiation use efficiency; TE: Transpiration efficiency; SC: stomatal conductance 
(14) Concentration levels assumed for simulations with static [CO2] for simulations with assumed ineffective CO2 
fertilization 

M
odel 

Leaf area 
developm

en
1 

Light 
interception

2 

Light 
utilisation

3 

Y
ield 

form
ation

4 

Stresses 
involved

5 

Type of heat 
stress 6 

C
rop 

phenology
7 

Type of 
w

ater stress 8 

 
Evapo-

transpiration
9 

Soil w
ater 
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10 

R
oot 

distribution 
over depth

11 

 

Soil C
N

 
m

odel 12 

C
O

2  effects 13 

C
O

2  levels 14 

EPIC D S RUE HIws 
Prt B 

W T 
H A 
N P 
BD 
AL 

V T(HU
) V O  

E PM 
 

10 LIN W C N 
B(1) 
P(6) 

RUE, 
TE 

380 
ppm 

GEPIC D S RUE HIws 
Prt B 

W T 
H  A 
N P  
BD 
AL 

V T(HU
) V O 

E PM 5 LIN W C N 
B(1) 
P(6) 

RUE, 
TE 

364 
ppm 

LPJ-
GUESS 

D S P-R HIws W T  NA T V E PT 2 LIN NA LF, 
SC 

379 
ppm 

LPJmL PS S P-R HIws W T  NA T V E PT 5 EXP NA LF, 
SC 

370 
ppm 

pDSSAT D S ; 
Soy:

D 

RUE; 
soy: 
P-R 

Gn W T 
H A 

N 

V R 
F 

T  V 
DL O 

E  PT  4 EXP C N 
P(3) 

RUE, 
TE, 
soy: 
LF, 
TE 

330 
ppm 

PEGASU
S 

D S RUE Prt W T  
H 

N P 
K 

V F T(HU
) 

E PT 3 NON NA RUE 
TE 

369 
ppm 
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Table S3. As Table 1 but across both assumptions on CO2 fertilization effectiveness. The 
assumptions on CO2 fertilization effectiveness is important for the overall uncertainty in results 
but typically depends on the RCP and the GGCM implementation and thus mainly shows in the 
cross-interaction terms with these. 
 

 All crops  Maize  Wheat  Rice  Soy  

CO2 share [%] 23.8 5.2 43.2 27.5 33.5 

GGCM share [%] 40.1 59.7 14.6 31.7 31.0 

RCP share [%] 15.7 23.7 11.3 3.4 9.1 

CO2xRCP share [%] 8.1 1.6 15.0 10.1 10.8 

GGCMxRCP share 

[%] 

6.5 9.1 5.4 6.8 4.0 

CO2xGGCM share 

[%] 

3.8 0.5 7.1 13.8 7.7 

CO2xRCPxGGCM 

share [%] 

2.1 0.2 3.4 6.7 3.8 

Standard Deviation 

[Pcal] 

882 377 220 276 114 
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Table S4: ANOVA results for all GCMs, assuming full CO2 fertilization, describing the shares of 

overall variance explained by the  GCMs, GGCMs, the RCPs and their interaction in percent. 

The Standard Deviation [Pcal] indicates how variable projections are across RCPs, GCMs and 

GGCMs. 
 All crops  Maize  Wheat  Rice  Soy  

GCM share [%] 7.2 6.6 13.3 2.0 7.6 

GGCM share [%] 71.7 62.9 59.6 72.0 70.7 

RCP share [%] 0.0 9.5 3.9 4.1 1.3 

GCMxRCP share 

[%] 

2.4 2.2 4.7 0.9 1.8 

GGCMxRCP share 

[%] 

16.7 12.4 13.4 20.6 15.7 

GCMxGGCM share 

[%] 

1.6 5.0 2.9 0.4 2.4 

GCMxRCPxGGCM 

share [%] 

0.4 1.4 2.2 0.2 0.5 

Standard Deviation 

[Pcal] 

780 298 170 292 111 
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