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Abstract
Climate change is projected to negatively impact biophysical agricultural productivity inmuch of the
world. Actions taken to reduce greenhouse gas emissions andmitigate future climate changes, are thus
of central importance for agricultural production. Climate impacts are, however, not unidirectional;
some crops in some regions (primarily higher latitudes) are projected to benefit, particularly if
increased atmospheric carbon dioxide is assumed to strongly increase crop productivity at large spatial
and temporal scales. Climatemitigationmeasures that are implemented by reducing atmospheric
carbon dioxide concentrations lead to reductions both in the strength of climate change and in the
benefits of carbon dioxide fertilization. Consequently, analysis of the effects of climatemitigation on
agricultural productivitymust address not only regions forwhichmitigation is likely to reduce or even
reverse climate damages. There are also regions that are likely to see increased crop yields due to
climate change, whichmay lose these added potentials undermitigation action. Comparing data from
themost comprehensive archive of crop yield projections publicly available, we find that climate
mitigation leads to overall benefits from avoided damages at the global scale and especially inmany
regions that are already at risk of food insecurity today. Ignoring controversial carbon dioxide
fertilization effects on crop productivity, wefind that for themedian projection aggressivemitigation
could eliminate∼81%of the negative impacts of climate change on biophysical agricultural
productivity globally by the end of the century. In this case, the benefits ofmitigation typically extend
well into temperate regions, but vary by crop and underlying climatemodel projections. Should large
benefits to crop yields from carbon dioxide fertilization be realized, the effects ofmitigation become
muchmoremixed, though still positive globally and beneficial inmany food insecure countries.

Introduction

The discussion and debate around climate mitigation
is generally focused on energy mix options, technical
and economic feasibility, and associated losses in
economic performance measured in percentage of
gross domestic product (Kriegler et al 2014).Much less
attention has been paid to avoided damages through
reduced climate change impacts if global warming is

constrained to low levels, such as the 2° target (but
see e.g.Warren et al 2013).

Recent model intercomparison projects such
as the Agricultural Model Intercomparison and
Improvement Project (AgMIP) (Rosenzweig et al
2013) and the Inter-Sectoral Impact Model Inter-
comparison Project (ISI-MIP) (Warszawski et al 2014)
have coordinated simulations of climate change
impacts under different future climate projections and
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highlighted the significant uncertainty in agricultural
impact models, mainly focusing on the high-end
emission scenario under the Representative Con-
centration Pathway (RCP) 8.5 (Moss et al 2010, Riahi
et al 2011). However, the participating crop models
also covered a broader set of climate scenarios, includ-
ing the low-end representative concentration pathway
(RCP2.6), representing a potential future world with
strong climate mitigation policies (van Vuuren
et al 2011a).

The objective of this study is to analyze the effects
of such strong climate mitigation on biophysical agri-
cultural productivity, which includes both reduced
potential benefits from climate change in currently
temperature-limited areas (e.g. in higher latitudes) as
well as avoided damages in regions that are negatively
affected by climate change (e.g. tropics). Hence, we
assess the effect of climate mitigation on biophysical
agricultural productivity by comparing simulations of
the global gridded crop models (GGCMs) as sub-
mitted to the ISI-MIP archive (http://esg.pik-
potsdam.de/esgf-web-fe/) for the end of the 21st
century.

While moderate climate change is often found to
have positive effects on agricultural productivity in
higher latitudes, where agricultural production is
often constrained by low temperatures, the tropics are
typically projected to experience detrimental effects of
climate change on agricultural productivity even at
low levels of warming (Rosenzweig and Parry 1994,
Funk et al 2008, Rosenzweig et al 2014). Carbon diox-
ide (CO2) fertilization, i.e. the stimulation of photo-
synthesis in C3 crops (such as wheat, rice and soy) and
reduced water requirements in all crops, has been
shown to be able to compensate for some part of the
detrimental effects of climate change on agricultural
productivity, especially if assumed to not to be con-
strained by down-regulating mechanisms or nutrient
limitation (Zavala et al 2008, Leakey et al 2009, Ribeiro
et al 2012). The effectiveness of CO2 fertilization has
been assessed in various modeling and experimental
studies but still constitutes a major uncertainty in
future crop yield projections (Long et al 2006, Tubiello
et al 2007, Ainsworth et al 2008) and biosphere model-
ing in general (Schimel et al 2015). This is not only
because of the uncertainty in the implementation in
the models, but also because experimental studies
have identified severalmechanisms that respond nega-
tively to CO2 fertilization and may prevent that CO2

benefits on photosynthesis can be exploited in the
form of higher crop yields (e.g. Ribeiro et al 2012). As
anthropogenic climate change is mainly driven by
increasing atmospheric concentrations of carbon
dioxide (abbreviated as [CO2] in the following), along
with other greenhouse gases (Myhre et al 2013), cli-
mate mitigation does not only cause a decrease in glo-
bal warming and associated changes in atmospheric
circulation and precipitation patterns, but also reduc-
tions in the potential benefits of CO2 fertilization.

We address uncertainty in patterns of climate
change and climate sensitivity as well as in cropmodels
and parameterizations by analyzing an ensemble of
five General Circulation Models (GCMs) and six
GGCMs for RCPs 8.5 and 2.6. Owing to the given data
availability, we focus our analysis on simulations
where CO2 fertilization is assumed to be fully effective,
for which all 30 GCM×GGCM combinations are
available. Simulations with the assumption of ineffec-
tive CO2 fertilization are only available for one GCM
(HadGEM2-ES) and all six GGCMs, which we analyze
as well to ensure the robustness of our conclusions to
the on-going uncertainty regarding the effectiveness of
CO2 fertilization in enhancing crop yields.

Methods

Simulation ensembles
We here consider the broadest set of consistent future
crop yield simulations available to date, which is
publicly available in the ISI-MIP fast-track data
archive (Warszawski et al 2014) as described by
Rosenzweig et al (2014).While Rosenzweig et al (2014)
focused on the high-end emission scenario (RCP8.5),
we here compare these results against a low emission
scenario (RCP2.6), which represents strong climate
mitigation efforts (van Vuuren et al 2011a). This data
set covers various sources of uncertainty: (a) the
uncertainty in climate change amplitude and patterns
as represented by five different GCM implementations
of each RCP emission scenario from the CMIP5 data
archive (Taylor et al 2012); (b) the uncertainty from
crop model response to climate change and CO2

fertilization as represented by six different GGCMs
(Rosenzweig et al 2014); and (c) the uncertainty from
the effectiveness of CO2 fertilization on agricultural
productivity as represented by two contrasting simula-
tions with static and dynamic [CO2]. The ten future
climate change projections have been supplied to crop
modelers as global daily fields of bias-corrected
weather variables, including daily minimum and
maximum temperature, precipitation, shortwave
radiation, vapor pressure deficit and others (Hempel
et al 2013).

The five GCMs considered and bias-corrected in
ISI-MIP are: HadGEM2-ES (Jones et al 2011), IPSL-
CM5A-LR (Dufresne et al 2013), MIROC-ESM-
CHEM (Watanabe et al 2011), GFDL-ESM2M (Dunne
et al 2013a, 2013b), and NorESM1-M (Bentsen
et al 2013, Iversen et al 2013), and were selected by ear-
liest availability in the CMIP5 data archive (Taylor
et al 2012). The GCMs translate the greenhouse gas
emission pathways (RCP 2.6 and 8.5) into spatial and
temporal fields of temperatures, precipitation and
other atmospheric variables. These climate scenarios
were supplied to cropmodelers in bias-corrected form
(Hempel et al 2013).
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Crops and cropmodels
We consider maize, wheat, rice, and soy for this
comparison. These four major staple foods were
selected as the top priority crops in the ISI-MIP fast-
track, and together account for 57% of all vegetable
food calories, 53%of all animal feed calorie supply and
50% of harvested area in 2010 worldwide (FAO 2015).
The six GGCMs include site-based models (EPIC
(Williams 1995, Izaurralde et al 2006), GEPIC (Wil-
liams et al 1990, Liu et al 2007), pDSSAT (Jones
et al 2003, Elliott et al 2014b)) and agro-ecosystem
models (LPJ-GUESS (Smith et al 2001, Bondeau
et al 2007, Lindeskog et al 2013), LPJmL (Bondeau
et al 2007, Fader et al 2010,Waha et al 2012, Schaphoff
et al 2013), PEGASUS (Deryng et al 2011, Deryng
et al 2014)), see table S1 and Rosenzweig et al (2014)
for a comprehensive description ofmodels, setups and
simulation protocols as well as tables S1 and S2 in the
appendix of this paper. The IMAGE-AEZ model,
which also contributed data to the ISI-MIP archive,
was excluded as not all scenarios considered here are
available from thatmodel.

These six cropmodels differ in the parameters and
mechanisms assumed to represent agricultural man-
agement, as well as in how plant processes are imple-
mented. pDSSAT, for example, implements CO2

effects in form of a scaling factor on the radiation use
efficiency factor (RUE) that is used to compute net pri-
mary productivity as a function of intercepted light
energy. PEGASUS, EPIC and GEPIC also scale RUE
and additionally scale transpiration efficiency with
increasing [CO2], while LPJ-GUESS and LPJmL
explicitly compute stomata conductance (for the
exchange of water and CO2 with the atmosphere)
and photosynthesis as constrained by CO2 availability,
light energy and Rubisco activity (see table S2).
Management systems are represented by each
model’s default setting, ranging from a uniform
assumption of crops grown under stress-free auto-
matic fertilization everywhere (EPIC) to pixel-specific
calibration of reference period yields (PEGASUS).
Similarly, sowing dates and crop varieties follow
model-specific parameterizations, and can differ sub-
stantially. This diversity, however, also reflects the
great variability in production systems within regions
that is typically simplified to representative systems in
simulations.

CO2 fertilization
We analyze the full set of 30 GGCM×GCM combi-
nations here under the assumption that CO2 fertiliza-
tion is fully effective. The central response is reported
in terms of the ensemble median. The effectiveness of
CO2 fertilization in the long run and at the scale of
agricultural production systems is highly uncertain
(Zavala et al 2008, Leakey et al 2009, Ribeiro
et al 2012). For this reason, we also consider simula-
tions with fixed [CO2] (table S2), representing the

assumption that CO2 fertilization is ineffective at these
scales. According to the given data availability in the
ISI-MIP data archive for GGCM simulations (Rosenz-
weig et al 2014), we focus on theHadGEM2-ES climate
model (Jones et al 2011) implementation of the
different RCPs for the case of ineffective CO2

fertilization.

Aggregation
We present results aggregated to FPUs as well as
globally. For the spatial aggregation we assume static
current crop-specific and irrigation system specific
harvested areas per simulated half-degree grid cell
based on MIRCA2000 (Portmann et al 2010). Crop
production (prod) is measured in peta calories
(Pcal=1015 cal) per FPU (or globally) which is
computed as the sum over all grid cells p in that spatial
unit, multiplying area (area), the fractional use (frac)
per crop c and irrigation system i (rainfed, irrigated),
the caloric density (cal) per crop and simulated
changes in productivity (y) for each time step t,
according to equation (1)

* * *å=
= = =

( ) ( )yprod area frac cal . 1t
p c i

n

p p c i c t c i
1, 1, 1

, , , ,

Ensemble corrections
In order to make absolute changes comparable
betweenmodel simulations, we bias-correct simulated
crop production of maize, wheat, rice and soy with
gridded crop yields from Iizumi et al (2014). For that,
we interpolate the Iizumi data from their original
1.125° resolution to the GGCM resolution of 0.5° and
aggregate these to the level of Food Production Units
(an intersection of major river basins and national
boundaries; FPUs, see figure S1) (Cai and Rose-
grant 2002, Kummu et al 2010) and global levels. A
model-specific correction factor is then derived per
FPU to scale GGCM simulations so that simulated
FPU-level production averaged over the reference
period matches the observed levels. This approach is
analogous to the bias-correction commonly applied to
GCMresults.

The PEGASUS model does not simulate rice.
Therefore, when analyzing changes in total calorie
production of the four crops, we use the ensemble
median of rice simulations from the other five models
in place of the missing PEGASUS rice results. In this
way, total calorie projections of PEGASUS are not
biased compared to the other GGCMs that include
rice as a third C3 crop. For more details of this
approach see Elliott et al (2014a). PEGASUSwas omit-
ted in the rice-only analyses presented here.

Metrics
All changes in agricultural production are represented
as absolute changes of the bias-corrected 30-year
period at the end of the 21st century (2070–2099)with
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respect to the baseline period (1980–2009), see
equation (2)

D = - ( )y prod prod . 2future baseline

Here D
~

y depicts the median of all Dy (as com-
puted in equation (2)) from all GGCM×GCM com-
binations considered. Even under strong climate
change impact scenarios (here represented by the five
RCP8.5 scenarios), climate change impacts on agri-
culture are not uniformly negative and do not necessa-
rily scale unidirectionally with climate change. The
high latitudes, which currently experience strong low-
temperature limitations, typically profit from climate
change, especially if full effectiveness of CO2 fertiliza-
tion is assumed (Rosenzweig et al 2014). Under cli-
mate mitigation, both the impacts of climate change
alone, and the combined impacts of climate change
and CO2 fertilization effects, can be not only dam-
pened or fortified versions of the impact under non-
mitigated climate change, but they can also differ in
sign. That is, crop-region combinations that see posi-
tive impacts from climate change (or from the com-
bined climate change and CO2 fertilization effects)
under non-mitigated climate change may see negative
impacts under climate mitigation scenarios (or
vice versa).

To quantify the effects of climate mitigation on
agricultural productivity, we thus need to consider
both cases: (a) avoided damage due to mitigation (b)
and (b) lost potentials due to mitigation (l ). Avoided
damage metrics (b) are computed for all crop-region
combinations, which are projected to see net declining
productivity under non-mitigated climate change
(RCP8.5 scenarios). Lost potentials metrics (l) are
computed for all crop-region combinations which are
projected to see net increasing productivity under
non-mitigated climate change (RCP8.5 scenarios).
These two cases aremutually exclusive and can thus be
presented in maps. We represent the metrics in rela-
tive form, i.e. percentage of damages avoided and
percentage of potentials lost to allow for a direct com-
parison between FPUs. At the global aggregation, this
is, however, weighted by the total production per FPU
to avoid overly emphasizing regions with little
contribution to overall crop production in the figures
shown.We showmaps of absolute changes in produc-
tion per FPU in the appendix (figure S2). The metrics
are defined as follows

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟*b = -

D

D
D <~
~

~
( )

y

y
y1 100% if 0 32.6

8.5

8.5

and

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟*l =

D

D
- D >~

~
~

( )
y

y
y1 100% if 0. 42.6

8.5

8.5

As such, the avoided damages of mitigation (b)
range from -¥ and +¥, with positive values indi-
cating benefits of mitigation from avoided damages

and negative values indicating that mitigation would
make negative impacts more negative. Similarly, the
lost potentials from mitigation (l) range from -¥
and +¥,with positive values indicating that the ben-
efit of climate change is greater after mitigation and
negative values indicating that the benefit of climate
change is reduced bymitigation.

Quantifying uncertainties
In the presentation of results, we focus on the
ensemble median of the 30 simulation sets
(5GCMs×6GGCMs) available for RCP8.5 and for
RCP2.6. We dissect the uncertainties in the global
climate change impact assessment induced from
GGCMs and CO2 fertilization by conducting an
ANOVA analysis using the aov function in R (R
Development Core Team 2014). To understand the
role of CO2 fertilization, we focus on the HadGEM2-
ES scenarios, as data is not available for the other
GCMs for the assumption of ineffective CO2

fertilization.

Results

Impacts of climate change andCO2 fertilization
Unmitigated climate change, as e.g. represented by the
RCP8.5 emission scenario (Riahi et al 2011, van
Vuuren et al 2011b) poses a significant threat to
agricultural production, especially in lower latitudes
even if CO2 fertilization is assumed to be fully effective
in enhancing yields (figure 1). Of the four individual
crops analyzed here, maize (figure 1(B)) shows the
strongest negative impact of climate change. As for all
C4 crops, the photosynthesis of maize is not directly
stimulated by elevated [CO2]. Higher latitudes are
projected to respond positively to climate change and
CO2 fertilization. At the global scale, unmitigated
climate change under the RCP8.5 scenario leads to a
median reduction in crop production of the four
major crops wheat, maize, rice and soy by 94 Pcal, or
just less than 2% of total production. Among the full
set of GCM×GGCM combinations with fully effec-
tive CO2 fertilization, the global RCP8.5 impact ranges
from a caloric increase by 2565 Pcal to a decrease by
1047 Pcal (blue bars infigure S3).

Climate change mitigation, i.e. substantially lower
[CO2] and other greenhouse gases by 2100, is repre-
sented by the RCP2.6 scenario (van Vuuren
et al 2011a), which peaks in around 2050 at 443 ppmv
[CO2] and declines to 421 ppmv by 2100. Under cli-
mate mitigation, agricultural production is not only
subject to less severe increases in temperature, but also
to less CO2 fertilization (if assumed to be effective) and
circulation patterns and associated changes in pre-
cipitation can be different from both current day and
RCP8.5 patterns.

Nonetheless, climate change impacts on agri-
cultural production display similar large-scale

4

Environ. Res. Lett. 10 (2015) 125004



patterns, with stronger impacts in the lower
latitudes and beneficial effects in the higher latitudes,
where crop growth is often temperature limited in at
least parts of the year. However, impacts on agri-
cultural productivity are generally less pronounced
(figure 2), and may also change sign in some FPUs,
both for individual crops (e.g maize in eastern USA)
and for overall agricultural productivity (e.g in
Europe).

Under strong mitigation efforts (RCP2.6), com-
bined climate change and CO2 fertilization effects
lead to a small median increase in agricultural pro-
duction at the global scale of 73 Pcal (1%, blue in
figure S4), while climate change alone (assuming no
CO2 fertilization) leads to a slight reduction of glo-
bal agricultural production (red bars in figure S4).

Impacts of GHGmitigation on agricultural
productivity
There are many regions that profit from climate
mitigation (i.e. lower [CO2] and less climate change)
either because projected damages from climate change
on agricultural productivity can be (partially) avoided
(green areas in figure 3) or because yield increases
under climate mitigation (RCP2.6) are projected to
exceed the projected increases in the unmitigated
climate change scenarios (RCP8.5, blue in figure 3).
These regions often coincide with regions that are
under high or extreme risk of food insecurity (Rosen
et al 2015), such as many African countries and
India, but also cover main producer areas, such as the
United States of America (figure 2). Other regions
see detrimental effects of climate mitigation on

Figure 1. Simulated climate change impacts on agricultural productivity (Gcal/ha) in each FPU for the fourmajor cropsmaize, wheat,
rice and soy for RCP8.5 assuming full effectiveness of CO2 fertilization depicted as themedian change of all GGCM×GCM
combinations (n=30). The top panel (A) shows the combined climate change andCO2 fertilization effect for the combined
agricultural productivity of all four crops combined; panels (B) (maize), (C) (wheat), (D) (rice) and (E) (soy) show the changes in
agricultural productivity for individual crops. Changes in productivity are computed at the FPU level but are displayed only for regions
currently cropped formaize, wheat, rice and soy (Portmann et al 2010), i.e. white areas do not grow these crops.
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agricultural productivity, mainly because yields are
projected to increasemore strongly under unmitigated
climate change (RCP8.5) than under climate mitiga-
tion (RCP2.6, red areas infigure 2(a)).

Crop models indicate that climate mitigation can
alleviate all negative impacts on agriculture at the glo-
bal scale and even supply a small bonus of 2% if CO2

effects can be fully realized (table 1). There are also
substantial regional differences between the individual
crops (figures 3(B)–(E)). Maize, a C4 crop that sees no
direct stimulation of photosynthesis under elevated
[CO2], displays the strongest overall response to cli-
mate change and has the largest potential to profit
from climate mitigation, while the other three crops
displaymixed responses.

Climate mitigation efforts do not only reduce the
median damage projections for agricultural pro-
ductivity, but the sign of changes is also uncertain in
projections of crop productivity under climate change
and CO2 fertilization. As such, climate mitigation (i.e.

RCP2.6 versus RCP8.5) also makes changes to lower

agricultural productivity (D <
~

)y 0future less likely
(figure 4 (A) versus (B)).

Uncertainty in future projections of agricultural
productivity
At the global level, positive and negative impacts in the
different regions compensate each other and global
change impacts are thus projected to be relatively small
for the median case. However, the simulation results
of changes in global agricultural productivity are
subject to large uncertainties fromdifferences inRCPs,
GCMs and GGCMs. With assumed full effectiveness
in CO2 fertilization, total agricultural productivity on
currently cultivated areas increases by 112 Pcal from
1980–2009 to 2070–2099 under climate mitigation
(RCP 2.6, figure S4) and decreases by about 37 Pcal
under unmitigated climate change (RCP 8.5,
figure S3).

Figure 2.As figure 1 but for RCP 2.6, representing a strong climatemitigation scenario.
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If CO2 fertilization is assumed to be ineffective,
crop production in almost all regions profits from cli-
matemitigation (figure S5).

If CO2 fertilization is assumed to be ineffective,
projections of global crop productivity are subject to
uncertainties from the emission pathway (RCP2.6 ver-
sus RCP8.5) and the GGCMused. The role of different
GCMs cannot be investigated here, so for this analysis
is based on HadGEM2-ES only. In this setting, the
RCP determines the amplitude of climate change
while CO2 concentrations are assumed to be constant.
We find that the GGCMs contribute relatively little to
overall uncertainty, except for maize (56% of overall
variance), whereas the emission pathway (RCP) and
thus the strength of climate change strongly affects the

Figure 3.Effects of climatemitigation on agricultural productivity for the four crops combined (A) or individually formaize (B),
wheat (C), rice (D) or soy (E). Green and purple areas show regions where unmitigated climate change (RCP8.5) is projected to reduce
agricultural productivity. In green areas, this damage can be reduced by climatemitigation. Amplified damage (purple) through
mitigation is very rare and only occurs in regions with very small damages under unmitigated climate change (comparefigure 1). Red
and blue areas show regions where unmitigated climate change is projected to increase agricultural productivity. In red areas this
additional potential is (partially) lost under climatemitigation, while it is further increased in blue areas.Mitigation effects are depicted
in percent, relative to the projected changes in agricultural productivity under unmitigated climate change and [CO2]. Themetricsλ
andβ aremutually exclusive and can thus be displayed in combinationwithout loss of information. Seemain text for definitions.

Table 1.ANOVA results forHadGEM2-ES, assuming noCO2 ferti-
lization, describing the shares of overall variance explained by the
GGCMs, the RCPs and their interaction in percent. The standard
deviation (Pcal) indicates how variable projections are across RCPs
andGGCMs.

All crops Maize Wheat Rice Soy

GGCMshare (%) 29.6 56.3 15.5 17.5 21.9

RCP share (%) 66.9 36.4 71.8 80.9 74.8

GGCM×RCP
interaction

share (%)

3.5 7.3 12.8 1.6 3.2

Standard devia-

tion (Pcal)
751 393 192 158 85
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projected changes in agricultural productivity
(table 1).

If CO2 fertilization is assumed to be fully effective
(table 2), the relative shares are reversed (except for
maize). The RCP-induced variance becomes sig-
nificantly smaller across all crops and the GGCM-
induced variance becomes dominant. Also the
GGCM×RCP interaction contributes larger shares
to the overall variance, which is higher when CO2 fer-
tilization is included for the combination of all four
crops, and rice and soy separately, but lower for maize
andwheat.

If considering the three sources of uncertainty
CO2 fertilization, RCP and GGCM in the HadGEM2-
ES scenario ensemble (n=24), the attribution of var-
iance to the different drivers becomes more mixed.
Interaction of the different sources of uncertainty can
make up to 38% of overall uncertainty (rice, table S3).
Across the different FPUs, this pattern is largely con-
sistent, although shares vary across FPUs, but not
necessarily in clear patterns (figure S6).

Without CO2 effects, climate change impacts are
more severe but can be alleviated significantly (avoid-
ing damage of∼1200 Pcal or 81%) by climate mitiga-
tion at the global scale. While the largest uncertainty is
clearly themagnitude of CO2 fertilization, which often
changes the sign of climate change impacts in many
regions (figure S7). GCMs also contribute to overall
uncertainty despite the use of bias correction (table
S4), but their contribution is relatively small compared
to the contribution of GGCMs. The effect of GCM
uncertainty cannot be directly compared to the effect
of CO2 uncertainty, as the two assumptions on CO2

fertilization are only available for one GCM (Had-
GEM2-ES). Across the different FPUs, the GGCM
uncertainty is typically dominant (compared to the
GCM- and RCP-induced uncertainty), but there are

various FPUs, where the GGCM-induced uncertainty
contributes a third or less to overall uncertainty, espe-
cially formanywheat areas (figure S8).

Discussion

Data caveats
We use data of the ISI-MIP fast-track data archive,
which is, because of its comprehensiveness and global
coverage, the best data base available for studying the
effects climate mitigation on agricultural productivity.
However, the available data is not as comprehensive as
desirable and is subject to some constrictions that need
to be considered in the interpretation.

The general assumption in the ISI-MIP fast-track
data is that agricultural systems do not adapt to cli-
mate change, often implemented in theGGCMs as sta-
tic sowing dates and static parameters for crop
varieties and management, although GEPIC, PEGA-
SUS and LPJ-GUESS allow adaptation of some of these
variables (Rosenzweig et al 2014). As such, the adaptive
capacity in the flexibility of agricultural production
(e.g. cropping seasons, soil management, varieties)
and the continuous efforts to develop better

Figure 4. Likelihood of changes to reduced productivity under climate change and full effectiveness of CO2 fertilization for total
production ofmaize, wheat, rice and soy in percent of scenarios studied. As climate impact projections on agricultural productivity
can also differ in sign, we define the likelihood of change as the percentage of scenarios that lead to reduced agricultural productivity
compared to the baseline productivity (1980–2009), assuming that all projections are equally likely. Panel (A) is for 5GCMsunder
RCP8.5 (n=30), panel (B) for 5GCMsunder RCP2.6 (n=30). Changes are computed at FPU level but displayed only for regions
currently cropped formaize, wheat, rice or soy (Portmann et al 2010).

Table 2.As table 1, but assuming full effectiveness of CO2

fertilization.

All crops Maize Wheat Rice Soy

GGCMshare (%) 80.9 72.1 79.3 75.1 82.3

RCP share (%) 1.5 15.1 0.6 1.6 0.1

GGCM×RCP
interaction

share (%)

17.6 12.8 20.0 23.4 17.6

StandardDevia-

tion (Pcal)
822 357 143 303 105
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technological means (e.g. breeding new varieties) are
likely substantially underestimated in the analyzed
data set.

Many aspects that were found to significantly
affect agricultural production are currently not con-
sidered in these simulations, such as direct heat stress
(Teixeira et al 2013, Deryng et al 2014, Siebert
et al 2014), ozone damage (Fuhrer 2003, Hatfield
et al 2011, Pleijel and Uddling 2012), altered pressure
from weeds, pests and diseases (Dermody et al 2008,
Zavala et al 2008, Hatfield et al 2011). A notable excep-
tion is the PEGASUS model (Deryng et al 2011, Der-
yng et al 2014), which explicitly accounts for heat
stress and which typically projects more significant
reductions in agricultural productivity than the rest of
themodel ensemble (Rosenzweig et al 2014).

Also, we assume static current day cropping
patterns (Portmann et al 2010) in the analysis,
while also adjustments in land-use patterns would
lead to reduced climate change impacts (Nelson
et al 2014a, 2014b). The present analysis thus repre-
sents a comparison of the climate change pressure on
the adaptive capacity of the agricultural sector rather
than a projection of how well agricultural production
systems will perform under climate change. The
effects of climate mitigation as analyzed here are thus
also indicative of how production challenges can be
reduced through reduced GHG emissions and sub-
sequent reduced climate change.

Drivers of uncertainty
There is large variance across the different projections
of climate change impacts on agricultural production,
constituting the uncertainty in these projections. The
attribution of this uncertainty to the different drivers is
complicated by incomplete data coverage as the
assumption on ineffective CO2 fertilization was only
simulated for one GCM (HadGEM2-ES). The overall
variance (shown as the standard deviation in tables 1, 2
and S3, which is the square root of the variance but is
expressed in the same unit as the data, Pcal) increases
once CO2 fertilization effects are included, except for
maize and wheat. However, the attribution is mostly
reversed under the opposite assumptions on the
effectiveness of CO2 fertilization. The importance of
the emission path (RCP) for agricultural productivity
is high if no CO2 fertilization is assumed, because
climate change is the only driver and the 2 RCPs
compared are very different. However, once CO2

fertilization is included, it compensates or even over-
compensates much of the climate change impacts, so
that the two RCPs are not that different. The strong
climate change scenario (RPC8.5) is combined with
strongCO2 fertilization, whereas themoderate climate
change scenario (RPC2.6) is combined with moderate
CO2 fertilization. Whereas the variance over the RCPs
declines, variance over the GGCMs increases as new
processes (stimulation of photosynthesis in C3 plants,

reduced water consumption in all plants) and feed-
backs (e.g. soil moisture) come into play. This increase
in GGCM-induced variance is stronger than the
reduction in RCP-induced variance for rice, soy and
the combination of the four crops, but not for maize
and wheat. The increasing contribution of the interac-
tion of RCP and GGCM to overall variance (ranging
from 12% formaize to 23% for rice, table 2) compared
to the assumption of ineffective CO2 fertilization
(ranging from 2% for rice to 13% for wheat, table 1)
indicates that the CO2 effects are implemented differ-
ently in theGGCMs and substantial parts of the overall
variance can be attributed to the RCP×GGCM
combination. The uncertainty from GCMs in the data
sample used here (five bias-corrected GCMs, selected
by first availability, see Hempel et al 2013) is relatively
small (2% for rice, 13% for wheat) if CO2 effects are
considered (appendix table S4). This, however,
includes the compensation of climate effects with
CO2 fertilization effects so that the RCP-induced
variance is mostly important in the interaction of
RCP×GGCM. This indicates that the individual
GGCMs respond differently to the strength of climate
change and the (partially) compensating effects of CO2

fertilization. These patterns are variable in space, as
there are some regions with greater disagreement
betweenGCMprojections and otherswith very similar
projections. Overall, however, the GGCM-induced
uncertainty outweighs the other sources of
uncertainty.

The strong positive effect of high [CO2] on simu-
lated crop yields does not only constitute a strong
source of uncertainty in the GGCM projections. The
assumption on no effectiveness in increasing agri-
cultural yields is justified as there is also substantial
uncertainty in the overall effects of CO2 fertilization.
This includes co-limitations fromwater and nutrients,
altered competition with weeds and susceptibility to
pests and diseases (Dermody et al 2008, Zavala
et al 2008) and the uncertainty of how well stimulated
photosynthesis can actually be translated into higher
yields. This includes downregulation of photosynth-
esis (Ainsworth et al 2002, 2008, Long et al 2006,
Tubiello et al 2007), co-limitation through environ-
ment-controlled limitations to growth (Fatichi
et al 2014) or altered chemical composition and sub-
sequent partitioning of plant biomass (Ribeiro
et al 2012). All these factors are currently not included
in crop model simulations other than in aggregate
parameters (e.g. scaling factors for RUE, see table S2)
and thus render the CO2 effect estimated here as opti-
mistic. However, as some of these effects can bemana-
ged (e.g. pest control) or addressed in breeding
strategies (e.g. partitioning) it is impossible to assess
the magnitude of these effects. From a nutritional per-
spective, elevated [CO2] could also lead to reduced
micro-nutrient concentration, possibly posing a threat
to nutrition security, especially in less developed
regions (Müller et al 2014,Myers et al 2014).
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All six GGCMs have been applied and evaluated in
climate change impact studies before (table S1), but
the models’ performance has not been tested in a con-
sistent evaluation framework. The three ecosystem-
type models (LPJ-GUESS, LPJmL, PEGASUS) typi-
cally show more pronounced responses than the site-
based models (EPIC, GEPIC, pDSSAT). LPJ-GUESS
and LPJmL, which often show considerably stronger
responses to CO2 fertilization than the other models,
also do not account for changing levels of nutrient lim-
itations under evolving climate and [CO2]. As such,
these two models assume an adaptation to changed
conditions through increased fertilizer supply and are
therefore not directly comparable to the othermodels.
LPJ-GUESS and PEGASUS also assume adaptation in
varieties (growing season length), and PEGASUS and
GEPIC also assume adaptation in sowing dates not
only within a fixed planting window as EPIC, pDSSAT
and LPJ-GUESS do. As such, assumptions onmanage-
ment and on the flexibility of agricultural production
systems also constitute a significant source of differ-
ences betweenmodels’ projections. PEGASUS, despite
allowing for adaptation in sowing dates and varieties,
is typically the most pessimistic (Rosenzweig
et al 2014).

The diversity in model setups in the ISI-MIP
model ensemble employed here with respect to grow-
ing seasons or management systems (e.g. potential
versus actual yields, explicit nutrient stress, calibrated
productivity levels, see table S1) reflects part of the
diversity in actual production systems. However, it
may also introduce confounding dynamics such as
additional water stress if intensity levels are over-
estimated or if the growing season is not well para-
meterized. As such, the assumption that model biases
can be corrected by a linear correction factor may not
hold, but will have to be addressed by improved and
harmonized data on management in future simula-
tions (e.g. Elliott et al 2015). A global crop model
benchmark system is currently under development in
AgMIP GGCMI (Elliott et al 2015) and will facilitate
structured model evaluation and subsequent
improvements. We thus focus on the model ensemble
median here, which has been shown to be a robust
estimate for crop model projections (Bassu et al 2014,
Martre et al 2014, Asseng et al 2015).

Despite these important qualifiers, GGCM simu-
lations are the best tool available to assess climate
change impacts and the role of mitigation efforts for
agricultural production systems. The large model
uncertainty is largely a product of the multiple com-
plex interactions in soils and plants as well as uncer-
tainties in the parameterization of management
practices and crop varieties. This highlights the value
of such complex models and the diversity of these in
the present modeling ensemble. The GGCM Inter-
comparison (Elliott et al 2015) of the AgMIP (Rosenz-
weig et al 2013) has set out to better assess current
model skills, identify deficiencies and to improve on

these, where data availability and process under-
standing allow for it.

Implications of climatemitigation for agricultural
productivity
Agricultural productivity under given management is
driven by various aspects of climate change. This
includes changes in temperatures (min, max, mean),
precipitation (amount and temporal distribution),
and in cloudiness, which subsequently affects the
available energy from radiation and the corresponding
evaporative demand of the atmosphere. Atmospheric
CO2 concentrations do not only drive this climate
change and but also stimulate photosynthesis in C3
plants (such as wheat, rice and soy) and decrease water
requirements. These climate-change driven altera-
tions of growing conditions can thus lead to diverse
changes, depending on their direction (e.g. dryer or
wetter), amplitude, and the starting conditions (e.g.
cold- or heat-limited growing season).

As such, climate mitigation efforts, which lead to
lower greenhouse gas concentrations in the atmos-
phere (largely realized through lower [CO2]), have
mixed effects on agricultural productivity. In sum-
mary, climate change and CO2 fertilization lead to
damages to agricultural productivity in the lower lati-
tudes and to new production potentials through
higher yields in higher latitudes as well as in water-lim-
ited regions where water is used more efficiently by
plants (Deryng et al under review). Consequently, cli-
matemitigationmeasures through reduction of [CO2]
typically reduce the damages in warmer regions and
leads to losses of new production potentials in cooler
regions. Even if impacts are relatively small at the glo-
bal aggregation, climate mitigation would strongly
benefit many less developed and food insecure coun-
tries, as e.g. in Africa and Asia (Rosen et al 2015),
which would counteract the growing asymmetries
between developed and developing countries (Fischer
et al 2005).

Conclusions

Climate change impacts on agricultural production
can be greatly reduced by climate mitigation at the
global scale and also in most regions for maize, wheat,
rice and soy. However, associated reductions in [CO2]
also lead to reduced positive effects in CO2 fertilization
if these can be materialized by farmers in the fields.
Based on the ensemble median of five climate models
and six GGCMs, we find that climate mitigation has
case-specific effects on agricultural productivity.
While overall slightly positive at the global aggregation
level, individual regions display very different
responses to climate mitigation. Agricultural produc-
tivity in many regions shows a positive response to
climatemitigation, either through avoided damages or
through higher yield increases than under the
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unmitigated climate change scenarios. These regions
include many regions that are currently food insecure
(Rosen et al 2015) or are major food producers (e.g.
USA). Increased agricultural productivity in other
regions, partly through warmer temperatures in cold-
limited regions but mainly through the projected
positive effects of CO2 fertilization, cannot directly
compensate the overall reduction and would also
require substantial changes in production patterns
globally in order to exploit their potential. The
diversity in response across regions and crops to
climate mitigation reflects the diversity in climate
change impacts. This analysis of biophysical benefits
and losses in agricultural productivity through climate
mitigation demonstrates the potential and importance
of climate mitigation, especially for many less-devel-
oped countries. Developing a comprehensive assess-
ment of climate mitigation effects on the agricultural
sector will not only require accounting for changes in
production and consumption patterns (Nelson
et al 2014a, 2014b) but also to better understand and
project how agricultural productivity can be secured
or enhanced through changes in agricultural manage-
ment, including assessments of the associated eco-
nomic costs. This task remains a significant challenge
and will have to be addressed by global crop modelers
also in cooperation agricultural economists, as e.g., in
AgMIP.
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