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Abstract. Alert systems detect critical events which can happen in the short term. Uncertainties in data and in the models used for detection cause
alert errors. In the case of air traffic control systems such as Short-Term Conflict Alert (STCA), uncertainty increases errors in alerts of separation
loss. Statistical methods that are based on analytical assumptions can provide biased estimates of uncertainties. More accurate analysis can be
achieved by using Bayesian Model Averaging, which provides estimates of the posterior probability distribution of a prediction. We propose a
new approach to estimate the prediction uncertainty, which is based on observations that the uncertainty can be quantified by variance of predicted
outcomes. In our approach, predictions for which variances of posterior probabilities are above a given threshold are assigned to be uncertain. To
verify our approach we calculate a probability of alert based on the extrapolation of closest point of approach. Using Heathrow airport flight data
we found that alerts are often generated under different conditions, variations in which lead to alert detection errors. Achieving 82.1% accuracy
of modelling the STCA system, which is a necessary condition for evaluating the uncertainty in prediction, we found that the proposed method
is capable of reducing the uncertain component. Comparison with a bootstrap aggregation method has demonstrated a significant reduction of
uncertainty in predictions. Realistic estimates of uncertainties will open up new approaches to improving the performance of alert systems.
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1. Introduction

Alert systems aim to predict patterns of critical events
which can happen in the short term. The systems are
designed to predict events which must be avoided un-
der specified conditions on given data. In alert sys-
tems the “ground truth” is unavailable and so has to
be estimated within a simulated environment. This
is ideally designed to realistically handle combina-
tions of uncertainty factors involved in retrospective
events, as well as in manoeuvring intents of pilots at-
tempting to resolve a problem. The models are ex-
pected to provide plausible prediction of alert events.
In safety-critical applications, such as transport sys-
tems [1,2,3], air traffic control [4,5] using simulation
[6] and on-board Traffic Alert and Collision Avoid-
ance Systems (TCAS) [7], civil engineering [8,9,10],
and power plants [11,12,13], the estimation of accu-
racy suffers from uncertainties existing in both the
models and the data which are used for predictions.

Some alerts can be predicted less certainly than
others in terms of intervals of predicted probabilities,
see e.g. [1,14]. In this light, prediction intervals reflect

confidence of estimates within the probabilistic frame-
work [15], providing important information about pos-
sible risks in the form of posterior predictive distribu-
tions.

In air-traffic control, uncertainties in the data and
models affect predictions of the future positions of air-
craft and increase the errors of detecting areas of a pos-
sible conflict [16]. Errors of false positive type are de-
fined as false alarms or nuisance, whilst errors of false
negative type are defined as late or missed alerts [17].

The uncertainty affects the accuracy of predicting
the future positions of aircraft and increases errors in
alerts of separation loss [18,19,20]. Short-Term Con-
flict Alert (STCA) systems are used in airports, that
have complex and intensive air traffic, to warn opera-
tors and pilots when the distance between two aircraft
is critically short in a given zone. Alerts generated by
the STCA system warn about a possible conflict that is
defined as loss of safe separation between two aircraft,
see e.g. [21,22]. For prediction of possible conflicts,
STCA systems use radar data provided by air traffic
service. Distance and time to the Closest Point of Ap-
proach (CPA) between the aircraft are the main factors
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of collision risk, as defined in the pioneering research
[23]. Factors such as wind, weather conditions, aircraft
flight characteristics, unavoidable imprecision in oper-
ations and manoeuvres, as well as impression of radar
readings increase uncertainty in air traffic data, see e.g.
[24,25,26].

In an intensive air traffic environment, it is criti-
cally important to detect conflict alerts with the maxi-
mum accuracy and reliability. Analysis of uncertainty
factors, which affect the detection accuracy, therefore
will bring new insights into the problem [27,28].

Uncertainty in aircraft conflict detection can be
formulated within a probabilistic framework which
has been shown to be capable of improving the opera-
tional performance, as described in [29,30]. Other ap-
proaches based on Monte Carlo simulation have been
considered in [31,32].

The uncertainty in a prediction can be quite large
when the data sets available for building the mod-
els are small. To avoid this problem, it has been sug-
gested that the performance should be reported in the
form of a Bayesian confidence interval obtained by a
method which provides conservative measures of the
uncertainty [33]. Bayesian Model Averaging (BMA)
methodology in theory provides the most accurate
estimates of the predictive posterior distribution re-
quired for calculating prediction intervals. BMA has
been made computationally feasible by using Markov
Chain Monte Carlo (MCMC) approximations [34].

Bayesian inference has been used for the learn-
ing of flight trajectory patterns from real air traf-
fic data [35,6,36]. The Bayesian MCMC method has
been used to build a model of the STCA system
from Heathrow air-traffic data, in order to analyse the
uncertainty and determine factors that affect predic-
tions [37]. Although the described method has demon-
strated promising results in modelling the STCA sys-
tem, patterns of predicted outcomes have not yet been
estimated in terms of uncertainty. The analysis of such
patterns is critically required in order to find areas in
which STCA performance can be improved [17].

We observed that the Bayesian models can detect
some patterns at a high uncertainty in the posterior
predictive distribution. This happens because a large
number of models generate contradictory outputs as a
result of detecting two patterns, alert or normal. We
can thus analyse models that vote for incorrect deci-
sions in order to find factors that cause the uncertainty.
Making patterns of interest transparent by using De-
cision Tree (DT) models, Bayesian analysis provides
new insights into areas of potential improvements of

prediction performance, as described in our previous
work [38,39,40].

In this paper we describe a new Bayesian ap-
proach to modelling alert systems on given data in
order to (i) analyse the posterior predictive probabil-
ity distribution of alert patterns and (ii) provide in-
sights into the uncertainty of alert events. As outlined
above, alert systems generate data which do not con-
tain “ground truth”, and so modelling of the STCA
system is required in order to identify patterns which
are uncertain. Transparent modelling of an alert sys-
tem therefore will bring insights into the uncertainty
and conditions under which the uncertainty is raised.

In such circumstances, we assume that the uncer-
tainty in alert patterns is characterised by the variance
of the posterior predictive probability density. Predic-
tions with a variance above a given threshold are iden-
tified as uncertain, and so the number of such predic-
tions is important for evaluating the uncertainty of an
alert system. In our experiments the proposed method
demonstrated a substantial reduction in the number
of uncertain predictions by comparison with the boot-
strap aggregation described in [41].

For the research in this paper, flight data were
made available by the UK National Air Traffic Ser-
vices [42]. The proposed method will be used on these
data to demonstrate the ability (i) to recognise both
certain and uncertain predictions, and (ii) to provide
a significantly larger number of certain predictions by
comparison with the bootstrap aggregation. Reliable
analysis of patterns which increase probabilities of er-
rors is critically important for finding new insights
into areas in which alert systems can be improved
when their performance cannot be straightforwardly
estimated.

The rest of the paper is organised as follows. Sec-
tion 2 provides related work on air-traffic control. Sec-
tion 3 introduces the STCA problem and describes the
flight data that are used in our experiments. The sim-
ulation of alert probabilities is outlined in Section 4.
The following Section 5 describes the methodology
of Bayesian learning of DT models. The experiments
with the proposed Bayesian method are described in
Section 6, and the results are discussed in Section 7.
Conclusions are presented in Section 8. Appendix A
provides the geometrical extrapolation of the CPA,
which is used for estimating alert probabilities.

2. Related Work

National authorities specify vertical and horizontal
separation standards to maintain the safe navigation
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of aircraft in controlled zones. These standards en-
sure safe separation from the ground, other aircraft
and from protected airspace [43]. When two aircraft
in an airport environment are on a potential collision
course, a conflict event occurs and the controller and
pilots communicate a resolution action based on flight
data. To insure that the minimum separation between
the aircraft is maintained, the aircraft trajectory is pre-
dicted so as to avoid the conflict zone. In this sec-
tion we outline work related to prediction of conflict
events.

2.1. Linear extrapolation in conflict alert and
collision avoidance systems

In [27], the influence of radar surveillance perfor-
mance on conflict detection and separation distances
has been analysed by modelling a conflict alert system.
It has been reported that reliable assessment of the dis-
tances requires an advanced model which includes not
only radar monitoring but also weather conditions un-
der different failure scenarios.

Prediction of an aircrafts position in the future is
based on extrapolation using the aircrafts flight data.
The algorithm decides whether the aircraft pair will be
in a critical zone within the time of arriving at the CPA.
Based on such prediction, the TCAS [7] has signifi-
cantly reduced the risk of collision [44,45]. There is a
concern that false alarms decrease trust in the system
and lead to ignorance of alerts [17].

Geometric-based predictions may be not suffi-
ciently accurate when an aircraft does not behave as
expected in the immediate future [46]. The uncertainty
in a prediction is managed by increasing the minimum
distance and threshold time to the CPA at which an
alert will be detected. The alerts detected by using
such a linear prediction model have to be adjusted so
as to satisfy a trade-off between false and missed alert
rates. It has been concluded that the probabilistic ap-
proach directly determines the required balance.

2.2. Modelling with adjustable parameters

A Gaussian model is assumed, reflecting the uncer-
tainty along aircraft flight paths [27]. The model pa-
rameters are defined by an expected aircraft position
and a variance determining a 95% position in the hor-
izontal plane. Having adjusted the model parameters,
a region is estimated for a given minimum separation,
where a conflict is detected at a certain confidence in-
terval.

A probabilistic conflict detection system pre-
sented in [5] assumes a model simulating the errors
of trajectory prediction, which is used to minimise
missed and false alerts. In every conflict detection cy-
cle, two trajectories are simulated for each aircraft: one
trajectory is a baseline and the other, which contains
prediction errors, is used for simulating conflict detec-
tion and resolution. In every conflict detection cycle,
the baseline is used to determine whether the conflict
detection is an error or not, and thus the performance
in terms of false rates is estimated at a given level of
prediction uncertainty.

Monte Carlo simulation of air traffic control has
been presented as a realistic approach for risk assess-
ment [31]. The simulation is based on models which
represent interactions between components of a sys-
tem. Assessment of the risk of a conflict between the
aircraft is based on the results of Monte Carlo simu-
lations. In practice, when limited flight data are avail-
able, analysis of credibility intervals is required in or-
der to realistically evaluate risks.

2.3. Probabilistic modelling of air traffic

Aircraft trajectory models, developed for evaluating
the performance of air traffic alert systems, are limited
in their ability to represent flight data [6,36]. The pro-
posed methodology is based on a dynamic Bayesian
network framework described in [47]. Experiments
have demonstrated the efficiency of Bayesian models
for evaluating risks of collisions.

The rigorous analysis of traffic control systems re-
quires an accurate model of aircraft behaviour [6,36].
The feasibility of using a Markov decision process for
analysis of an air-traffic alert system has been investi-
gated in [26]. The different approaches for learning of
traffic models from recorded flight data are evaluated.
It has been found that one approach, which is based on
prior trajectory patterns, performs well on simulated
data, but it has difficulty with real-world data. The
other approach uses Bayesian inference techniques
to learn parameters of the traffic model employing
a Markov model. This approach is made computa-
tionally feasible with MCMC methods. The Bayesian
models have been found to better represent the ob-
served data.

An important consideration in air traffic alert sys-
tems is how to evaluate uncertainty. Many collision
avoidance systems use point estimates of the state
instead of the full posterior state distribution. Deci-
sion theoretical methods have been applied to collision
avoidance, but the importance of state uncertainty has
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required further investigation. A computationally effi-
cient framework has been proposed in [20] for evaluat-
ing the uncertainty. Examination of Monte Carlo simu-
lations has demonstrated that the estimates of state un-
certainty can significantly enhance safety of collision
avoidance systems.

Advanced algorithmic techniques have been de-
veloped for solving problems, which are caused by
multiple sources of uncertainties in flight data, for col-
lision avoidance [45]. These techniques employ proba-
bilistic models capable of representing the uncertainty
sources to optimise collision avoidance systems. Ex-
periments on recorded flight data have confirmed a sig-
nificant improvement in safety of collision avoidance
systems.

Deterministic models of collision avoidance are
not able to provide reliable estimates of collision risks.
Probabilistic models are capable of representing the
various sources of uncertainty. A model described in
[48] has been developed within a probabilistic frame-
work to handle the uncertainty in collision avoidance.

2.4. Ensemble methods

Ensemble methods, known from the literature also
as bootstrap aggregation [49,50] and bagging predic-
tors [41,51], aim to approximate the posterior pre-
dictive distribution by sampling from data given for
building the models. The ensemble methods signifi-
cantly improve the accuracy of prediction under cer-
tain conditions. A bagging method known as Random
Forests (RF) [52] has provided substantial gains in ac-
curacy, using such models as classification and regres-
sion trees.

The ensemble methods have improved the predic-
tion accuracy although estimation of predictive distri-
butions requires additional efforts to achieve condi-
tions under which the predictions are asymptotically
normal, and the confidence intervals can accompany
predictions [53]. The variability of predictions made
by the bagging methods and RF has been also esti-
mated in the form of standard errors [14]. In [54], the
uncertainty has been defined as the variation in the
ensemble of models, which quantifies the “disagree-
ment” between the model outcomes.

2.5. Bayesian averaging over DT models

The use of DT models within the Bayesian learn-
ing framework makes probabilistic inference trans-
parent and capable of providing insights into factors
that cause uncertainty in predictions [55,56,57]. DT

models are defined as hierarchical structures of split-
ting and terminal nodes which recursively split data
[58,59]. Tree-like models have been efficient for fail-
ure analysis and outcome prediction in engineering ap-
plications, see e.g. [60,61].

The Bayesian method represents a prediction
model as a Markov chain having transition states. The
current state is dependent on the previous state. Un-
der certain conditions the Markov chain achieves sta-
tionarity. These properties permit the generation of a
large sample of model parameters, which is required to
achieve the accurate approximation of predictive pos-
terior density. By contrast, RF is based on the random
subsampling from data and on random selection of
predictors. This strategy can simulate the uncertainty
in the data, but not in the model parameters, as we
discussed in [62,63].

3. STCA Problem and Data

Air traffic control systems are primarily based on ge-
ometric extrapolation of the minimal distance and ar-
rival time at the CPA for an aircraft pair [46,44,5]. In
our study we use this method to map the distances and
times, which were estimated from the given flight data,
onto alert probabilities that are required for evaluating
the prediction accuracy.

3.1. Representation of flight data

The primary flight data are received from radar in-
cluded in airport traffic control system. The received
information is updated in each radar cycle. Flight data
include radar positions of aircraft in the 3-dimension
system of coordinates x,y and z. The coordinates x and
y define the position of an aircraft in the xy lateral
plane. The coordinates x and y are relative to the radar
position, and the coordinate z is altitude.

Fig. 1 shows the traces of an aircraft pair in coor-
dinates x, y, and z. The alert cycles here are marked by
the filled (in Red) circles, while the normal cycles are
shown blank. The starting positions of the aircraft are
indicated by the numbers 1 and 2.

We can see that after the 20th radar cycle the sys-
tem detects a series of 6 alarm cycles. Having been
alerted, the pilot of aircraft 2 has undertaken an im-
mediate manoeuvre to avoid a dangerous loss of sepa-
ration with aircraft 1. During the alert cycles, the dis-
tance between the aircraft critically decreased from
2500 to 90. The projections of the aircraft trajectories
(in Grey) in the xy plane show that the aircraft ap-
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Figure 1. A radar track with alert cycles (in Red). Start positions of
aircraft are denoted by the numbers 1 and 2.

proached each other at least 5 cycles before the first
alert. This means that an earlier alert would enable pi-
lots and operators to plan a more safe and efficient ma-
noeuvre.

In our experiments we used the flight data that
represent traces of aircraft pairs with detected alerts.
Each trace includes a sequence of radar cycles as de-
scribed above. A cycle in the sequence represents the
movement of the aircraft pair and can be either nor-
mal or alert. These data are selected for modelling the
STCA system within the Bayesian framework in or-
der to estimate the accuracy and uncertainty of alert
detection.

For modelling the following predictor variables
were extracted from the data: (i) the distances dx,dy,
and dz between aircraft 1 and 2 along the coordinates
x, y, and z, respectively, and (ii) the velocities Vx,Vy
and Vz of the aircraft.

The distance between aircraft 1 and 2 is important
for alert detection in the airport environment when air-
craft change positions in coordinates x, y and z during
landing or taking off, so that d =

√
(d2

x +d2
y )s2 +d2

z ,
where s is the scale factor which is set in our research
at the fixed value of 1.

Information about times T1 and T2 in the lateral
plane for the aircraft 1 and 2 is also included in the
set of predictor variables. Table 1 lists all 12 variables
along with their ranges, where the negative values re-
flect the positions of aircraft in the radar coordinate
system.

Table 1. Predictor variables and ranges

Variable Notation Min Max Units

x1 dx -48.11 51.70 nmi
x2 dy -52.93 35.78 nmi
x3 dz -10297 8760 ft
x4 d 2.40 10297.06 ft
x5 vx,1 -691 584 kn
x6 vy,1 -806 473 kn
x7 vz,1 -83.10 96.66 kn
x8 vx,2 -444 599 kn
x9 vy,2 -527 426 kn
x10 vz,2 -95.05 11.53 kn
x11 T1 0 9 s
x12 T2 0 9 s

In our experiments we used 2,526 radar cycles
that represent traces of 66 aircraft pairs that were land-
ing or taking off at Heathrow. These traces were se-
lected because of approaching a critical distance, so
that an average alert rate was 19.7%. The number of
cycles in a trace was dependent on the aircraft veloci-
ties and, on average, was around 40.

4. Simulation of Alert Probabilities

As discussed in Section 1, the “ground truth” in alert
systems is not available, and probabilities of alerts
have to be simulated in a given environment. In this
section we describe how alert probabilities are calcu-
lated within our approach by using geometrical extrap-
olation of the CPA defined by distance D and time T ,
defined in [27,28]. Let a function fA(D,T ) denote the
extrapolated proximity between aircraft on a danger-
ous course. The function fA allows us to estimate the
probability of alert PA for each given cycle in the tra-
jectory. Note that this function does not handle other
factors which determine aircraft trajectories, and so it
cannot fully explain the behaviour of the STCA sys-
tem on given flight data.

In our approach, the function fA is built from the
recorded flight tracks represented by the distances D
and time T which are calculated for the CPA of aircraft
at each cycle of the recorded tracks. The flight data
include the STCA outcomes for normal (0) and alert
(1) cycles. Alert probabilities PA are then calculated
from the function fA(D,T ) for given D and T . The
probabilities PA are used for testing the ability of an
alert prediction method to distinguish the uncertainty
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in the predicted outcomes between two groups, certain
and uncertain.

A system for alert predictions is designed to be
able to estimate the uncertainty in the predictions
within the probabilistic framework. This ability in our
approach is evaluated on the recorded flight data by
analysing deviations, σ , of the posterior probabilities
of alert.

Let us consider the flight data that include n cy-
cles made available for modelling of an STCA system
and an estimator capable of predicting the probability
density and estimating σi for each cycle i = 1, . . . ,n.
Having divided the flight data into training and test
data sets, we can design an ensemble estimator on the
training data and then calculate the standard deviation
σi for all cycles included in the test data. We can then
consider a threshold deviation σ0 which divides the
predictions made by the estimator into two groups: one
with σi ≤ σ0 and the other with σ j > σ0, i ∈ I1, j ∈ I2,
where I1 and I2 are the indexes of cycles in the two
groups, respectively. The σ0 is a threshold which lies
between min({σi}n

1) and max({σi}n
1). The predictions

in the first group have a smaller σ than those in the
second group, and thus the uncertainties in the alert
probabilities predicted for cycles assigned to the first
group are smaller than those assigned to the second
group.

We can then verify whether the difference be-
tween the two groups of cycles, in terms of the extrap-
olated alert probabilities PA, is significant for a given
threshold σ0. If the difference is found to be significant
for a threshold σ0, we can then accept that predictions
in group I1 are certain and, by contrast, predictions in
group I2 are uncertain. In our experiments we found
that the model fA, built on the retrospective flight data,
explains 0.801±0.006 of STCA predictions within 3-
fold cross-validation. Appendix A describes the details
of the geometric extrapolation of aircraft trajectories.

5. Bayesian Averaging over Decision Tree Models

This section provides details of MCMC implementa-
tion of Bayesian averaging over DT models. DTs are
known as hierarchical models consisting of splitting
and terminal nodes. DT models are said to be binary if
the splitting nodes divide data points into two disjoint
subsets. The terminal node assigns an input to one of
the possible classes, the probability of which is dom-
inant [58]. For interpretation purposes, the single DT
which provides the Maximum a Posteriori probability
could be selected from a set of DT models that were
collected for averaging [64].

5.1. Markov chain Monte Carlo algorithm

Except for trivial cases the Bayesian methodology of
averaging over DTs can be feasibly implemented with
MCMC approximation. For the approximation, the pa-
rameters, θ , of a DT candidate are drawn from the
given proposal distributions. A candidate is accepted
or rejected according to Bayes rule calculated on the
given data D. Given the m-dimensional input vector
x which represent the flight parameters described in
Table 1, data D, and model parameters θ , the pre-
dictive posterior distribution p(y|x,D), y ∈ {1,C},is
obtained by combining the predictive posterior distri-
bution p(y|x,θ ,D) of parameters θ (i) conditioned on
data D, where C is the number of classes. Full details
of this process are given in our previous work [37].

In practice, information about the posterior p(θ |D)
is often limited. In such cases the MCMC approxima-
tion is achieved with a Metropolis-Hastings sampler,
which explores the posterior distribution by making
random proposals, see e.g. [65,66].

When DT models are grown, their dimensional-
ity (or number of nodes) varies. The Reversible Jump
(RJ) extension of MCMC makes possible the approxi-
mation over such models [67]. Given priors and a suf-
ficient number of samples, the RJ MCMC technique
explores the posterior distribution and takes samples
of model parameters.

The exploration of DT models of variable size has
been efficiently made by using the following moves:

Birth moves randomly split the data points falling
in one of the terminal nodes by a new splitting node
with a variable and rule drawn from the corresponding
priors.

Death moves randomly pick a splitting node with
two terminal nodes and assign it as a single terminal
with the united data points.

Change-split moves randomly pick a splitting
node and assign it a new splitting variable and rule
drawn from the corresponding priors.

Change-rule moves randomly pick a splitting
node and assign it a new rule drawn from a given prior.

The first two moves lead to a change in the di-
mensionality of parameters. The other moves explore
the distribution within the current dimensionality. In
particular, the change-split move makes “large” jumps
which potentially increase the chance of sampling
from a maximal posterior. By contrast, the change-rule
move makes “local” jumps in order to explore the de-
tails of an area of interest.

As the birth and death moves change the dimen-
sionality, Bayes’ rule includes a ratio to achieve the
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condition for reversibility of Markov Chain. Details of
the algorithm are given in [37].

There are two phases of MCMC simulation for
Bayesian learning of DT models. At the first, so-called
burn-in, phase the MCMC explores the parameters of
a DT model in order to find areas with a high likeli-
hood on the given data set. At the second, so-called
post burn-in phase, samples of a DT model are col-
lected for BMA. The most accurate results of BMA
are achieved when prior information on DT models is
available [68,69].

Within the Bayesian method, the best accuracy of
approximation of predictive density is achieved when
samples collected during the post burn-in phase are di-
verse. However, in practice the desired diversity of DT
models cannot be achieved in reasonable computing
time when prior information on the models is absent
or incomplete [69].

In general, the likelihood distribution of the model
can have multiple modes, which limits the ability of
MCMC to explore the full posterior distribution, as
described, e.g., in [34]. However, our research is not
specifically focused on this problem. Instead we con-
sider the limitations of MCMC sampling of DT mod-
els, which are caused by their hierarchical structures,
as discussed in [69]. These limitations lead to poor
mixing of DT models because of excessive number
of nodes in the grown DT models. Consequently, the
ensemble of DT models collected during the MCMC
sampling will underperform, as shown in our work
[70].

5.2. RJ MCMC sampler

When the Metropolis-Hastings algorithm makes a
birth move, a terminal node with n data points {x(i)}n

1
is proposed to be a new splitting node with a variable
j ∼U(1,m) and a threshold q′ ∼ f (x), where f (x) is
the distribution function of data {x(i)}n

i . The function
f (x) is required to set a prior on the birth move, as
described in Section 5.1. As the knowledge of f (x) for
each splitting node is limited, a uniform prior, U(a,b),
is used, where (a,b) is an interval in which a proposal
q′ is expected.

A change move, that is applied to a DT splitting
node, redistributes the data points that fall into the
downstream nodes, and therefore can produce a split-
ting node in which one of two branches contains fewer
data points than pmin. This condition can be written as

min(n(i)le f t ,n
(i)
right)< pmin, (1)

where n(i)le f t and n(i)right are the numbers of data points in
the left and right branches of the ith splitting node.

If the prior on the number of splitting nodes is
given properly, most samples are expected to be drawn
from the posterior that is related to areas of interest. If
such a prior is unavailable, a DT model will grow ex-
cessively and most of the samples will be drawn from
posterior distributions that are calculated for oversized
DT models. As a result, the estimates of the predictive
distribution will be biased, see e.g. [69].

In practice, priors on DT structures are often un-
available, and the MCMC sampler cannot efficiently
control DT structures, which leads to poor mixing.
However, the DT structure can be better controlled
with a sweeping strategy of the MCMC approximation
as proposed in [70]. The main idea behind this strategy
is to assign the prior probability of splitting DT nodes
dependent on the range of values within which the size
of a new data partition will exceed 2pmin.

This prior is adapted to the range of a data parti-
tion. The new splitting threshold q′ proposed for vari-
able j and partition i is drawn from a uniform distribu-
tion: q′ ∼U(a,b), where (a,b) is the interval of vari-
able x j at node i: a = min(x j) and b = max(x j).

When the change move is applied to a node that
is close to the DT root, distributions of data points
in its terminal nodes can be greatly changed, and one
or more terminal nodes can contain fewer data points
than pmin. If there is one such node, this node is swept
from the DT and the move is counted as a death move.
In cases when there is more than one such node, the
move is deemed unavailable according to the MCMC
strategy [70].

Our proposed MCMC strategy differs from that
described in [70] in the following aspect. Making a
birth or change move, the MCMC algorithm proposes
a new parameter q′ which is assigned within an inter-
val (a,b). This interval is estimated from the data sam-
ples {x(i)}n

1 that fall into the DT node assigned for the
move. Thus the knowledge of (a,b) excludes assign-
ing a proposal q′ outside of this interval. This strat-
egy satisfies the condition for reversibility of a Markov
Chain, which is needed in order to provide an equal
probability of assigning the reverse q. As a result, the
efficiency of MCMC, in terms of acceptance rate and
details of exploring posterior parameters, is expected
to be increased. The detailed exploration is critically
important in order to achieve the model diversity re-
quired for accurate approximation of the predictive
density.

The next section outlines pseudocode of the pro-
posed adaptive strategy.
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5.3. Pseudocode of adaptive strategy

Algorithm 1 outlines the main steps of the adap-
tive strategy of assigning proposals. The algorithm re-
ceives data points {x(i)}n

1 that are required to be split
by a given node, as well as pmin which defines the min-
imal number of data points allowed in a node’s branch.
The change move is applied to a DT split node to up-
date its current threshold q. Having received the data
points, the algorithm finds the interval (a,b) which
is required to avoid the condition in Eq. 1. The data
{x(i)}n

1 are sorted into ascending order in line 3 in or-
der to find an index i of the current threshold q in line
4. Indexes i1 and i2 are counted within the allowed
range and then xmin and xmax are assigned in lines 5
and 6. The parameter s defines the range of a uniform
proposal distribution function g(q′|q) =U(q−s,q+s)
within which a proposal q′ is drawn in line 8.

Algorithm 1 Change q

1: Input: Data {x(i)}n
1, pmin, q

2: procedure CHANGE q
3: Sort x(1) ≤ x(2) ≤ ·· · ≤ x(n)

4: Find i : x(i−1) < q,x(i) ≥ q, i = 2, . . . ,n
5: xmin = x(i1), where i1 = max(pmin, i− pmin)
6: xmax = x(i2), where i2 = min(i+ pmin,n− pmin)
7: s = min(q− xmin,xmax−q)
8: Proposal q′ ∼U(q− s,q+ s)
9: return q′

10: end procedure

6. Experiments

In this section we describe experiments with the pro-
posed Bayesian method on real STCA data. The aim
of these experiments was to verify the ability of the
proposed method to model outcomes of the STCA sys-
tem with a reasonable accuracy. In our experiments we
aim to find patterns which make uncertain contribution
to the prediction. This is required for finding areas in
which the accuracy of alert systems can be improved.

6.1. Experimental settings

In our experiments STCA probability is predicted for
each cycle of an aircraft pair trajectory within the pro-
posed Bayesian framework described in Section 5. The
cycles are represented by the input variables x1, . . . ,x12
described in Section 3.1. The Bayesian method esti-

Table 2. Flight Data statistics.

Characteristic Value

Number of encounters 66
Total number of cycles 2526
Average number of radar cycles per trace 40
Alert rate, % 19.7

mates a predictive probability density of an alert for
a given cycle. Estimates of the probability density are
then used for evaluating the uncertainty of the pre-
diction. If the uncertainty in terms of deviation of the
predictive probability density is high, the prediction
is said to be “uncertain”, otherwise the prediction is
said to be “certain”. For estimating predictive poste-
rior densities, the Bayesian method employs DT mod-
els built on the recorded flight data. DT models grown
on these data have different sizes and so the Bayesian
method uses RJ MCMC to handle variable dimen-
sionality of model parameters. Reversible Jumps are
made by the MCMC sampler outlined in Section 5
by proposing the parameter q′ for the moves which
change dimensionality of the DT model. The proposed
changes can be rejected or accepted. Eq. 1 defines a
condition when DT node i is unavailable for a pro-
posed move. Algorithm 1 outlines moves that are more
likely to be accepted and thus the efficiency of the
MCMC sampler will be improved. This condition de-
fines when a DT node can further split the data into
smaller subsets.

DT models outlined in Section 2 are used for
STCA prediction as follows. The input variables
which represent the flight data at a given cycle feed the
DT models accepted by the MCMC algorithm. The av-
erage over outcomes of these models is the predicted
probability of alert at the given cycle. The model out-
comes represent a predictive probability distribution
of the alert, which is required in order to estimate the
uncertainty in predictions. As discussed DT models
are easy-to-interpret and for this purposes the Maxi-
mum a Posterior model can be selected. An example
of the interpretation of DT models for predicting alerts
is provided in Section 6.4.

The experiments were run within 10-fold cross
validation so that each fold contains 59 aircraft traces,
which were selected for training, and the remaining
7 for testing the accuracy of alert detection. Table 2
summarises the information about the flight data, de-
scribed in Section 3.1, which were used in our experi-
ments.
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An advantage of using DT models is that these
models are applied “off-the shelf” as noted in [52], and
so the BMA method does not require many settings, as
discussed in [68,69].

The proposed Bayesian method was run with a
uniform prior on DT models as there was no informa-
tion about possible DT structures. The minimal num-
ber pmin was set equal to 5. The proposal probabili-
ties for the birth, death, change-split and change-rules
were set to 0.1, 0.1, 0.2, and 0.6, respectively. The first
two probabilities, the birth and death moves set to 0.1,
enabled the MCMC sampler to explore DT configu-
rations with a reasonable intensity during the burn-
in phase. Typically, larger DT configurations require
more intensive proposals of the birth and death moves,
see e.g. [37].

Setting the probability of the change-split to 0.2
enabled the MCMC algorithm to make the “large
jumps” that increase a probability of exploring all ar-
eas of interest and avoiding oversampling from areas
of local maxima. The remaining proposal probability
of 0.6 is assigned to the change-rule to enable the sam-
pler algorithm to explore details of the posterior dis-
tribution of DT model parameters of a current config-
uration. We found that with the given priors the above
proposal probabilities provided the best performance
of the Bayesian method with a reasonable efficiency
of MCMC sampling, which is achieved when an ac-
ceptance rate ranges between 0.25 and 0.7, according
to [34].

The number of burn-in and samples was set to
100,000 in order to achieve a stationary Markov chain.
In order to collect sufficient posterior samples to
achieve a desired approximation accuracy, the number
of post burn-in samples was set to be 10,000. Markov
chains generate correlated samples, and so the gener-
ated samples were decorrelated in order to obtain an
i.i.d. sequence by drawing each 10th sample in the post
burn-in phase. The proposal variance was set to 4.0
to achieve an acceptance rate of updating the Markov
chain around 0.4, which is within the range of efficient
MCMC sampling. With these settings, the Bayesian
performance within the 10-fold cross-validation was
82.1%±σ , where σ = 5.1% is the standard deviation.

In the burn-in phase the Markov chain started with
log a low likelihood value around -1000, converging to
a higher value that oscillates around -175. In the post
burn-in phase the log likelihood oscillated between -
200 and -150. The lower plots show that the average
number of DT nodes was around 46.

6.2. Experimental settings for Random Forest

RF, as an ensemble method discussed in Section 2, can
approximate posterior predictive probability distribu-
tions. In our experiments we applied this technique
to the flight data with the following parameters. The
number of DT models (or ensemble size) was 5,000.
The bootstrap sampling rate (or fraction of input data
to sample) was set to 0.7. The number of predictors
to be randomly selected for DT splits was 10 out of
the 12 described in Table 1. These parameters have en-
abled the RF to achieve a highest prediction accuracy
of 83.2% and so approximate a probability distribution
of interest.

6.3. Analysis of uncertainty in alert predictions

This section describes the experiments aimed at evalu-
ating the uncertainty in STCA predictions on the flight
data described in Section 3.1. The data are represented
by the predictor variables that characterise the flight
trajectories of aircraft pairs. The tracks were selected
with alert cycles that were recorded nearest to a closet
point of approaching. In the given airport environment
the number of such tracks was very small. The total
number of cycles was 2,526, and each cycle has a label
A=1 (alert) or A=0 (normal). The experiments were
run to compare the proposed Bayesian and existing RF
methods in terms of accuracy of estimating the uncer-
tainty of predictions made by the STCA system on the
given flight data.

Let us consider track 2 shown on Fig. 5 and es-
timate the posterior predictive probability densities of
alert for each cycle by using the proposed (BDT) and
existing RF methods. The related experimental set-
tings were discussed in Sections 6.1 and 6.2. Fig. 5
shows this track including 42 cycles in which cycles
21 to 33 were detected as alert (shown in Red), and
cycles before 22 and after 33 are normal.

Fig. 2 shows the distances DXY between aircraft
pair A1 and A2 along with the extrapolated probabil-
ities of alerts, PA, for cycles 1 to 42. The probabilities
PA increase from cycle 1, having a drop at cycle 11
as a result of change in flight direction of aircraft A2,
shown on Fig. 5. Then between cycles 20 and 31 the
probabilities PA reach a maximum around 0.67, whilst
the STCA system has predicted alert events between
21 and 33 cycles. We see that the estimations of PA
explain the alert events along the cycles, but impor-
tant information about uncertainties in the predictions
is absent.
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RF as an ensemble method, discussed in Sec-
tions 1 and 2, is capable of approximating the posterior
probability densities, providing the predicted probabil-
ities along with the ensemble variances which reflect
the uncertainty in predictions. The predicted probabili-
ties, PRF , and the ensemble standard deviation, σ , were
calculated for the cycles 1 to 41 and shown as error
bars on the third subplot of Fig. 2. The σ reflect the un-
certainties in predicted probabilities PRF . We can see
that the values of σ remain large between cycles 1 and
20 in the absence of alerts as well as between cycles
21 and 34 in the presence of alerts. The values of σ

decrease only after the last alert cycle 34. Thus the
RF based estimator fails to indicate the relevant uncer-
tainty level at cycles which precede the alerts.

The posterior probability densities of interest
were calculated by the proposed BDT method and are
shown in the fourth subplot of Fig. 2 as error bars. We
see that the alert probabilities PBDT and the values of
σ differ from those calculated by the RF estimator.
Both the alert probabilities PBDT and σ at cycles 1 to
18 remain low, except cycles between 9 and 13 when
the aircraft A2 has changed the flight direction. The
probabilities PBDT increase to 0.9 during alert cycles
between 21 and 33. Thus in comparison with the RF
estimator, the BDT provides more accurate informa-
tion on the predicted alert probabilities and uncertain-
ties. The RF estimator provides predictions variations
of which are unreasonably large.

It is interesting to observe in Fig. 2 and Fig. 5 that
at cycle 10 the aircraft A2 changed direction so that
the distance of CPA was increased, thus decreasing the
probability of conflict. The alert probabilities PRF and
PBDT predicted at this cycle are equal to 0.31. How-
ever, at the previous cycle 5 of these probabilities were
PRF = 0.23 and PBDT = 0 with the σRF = 0.363 and
σBDT = 0.05, respectively. This shows that the BDT
outcomes at cycles 5 and 10 are more realistic than the
RF outcomes.

Table 3 shows the standard deviations σRF and
σBDT calculated for the cycles k = 5,10, ...,35 along
with the alert probabilities PRF and PBDT and alert la-
bels A ∈ {0,1}. It is interesting to note that cycle 20
is normal whilst the next cycle 21 is alert, but the RF
estimator predicts the cycle 20 with PRF = 0.5 and
σRF = 0.383, whilst the BDT gives PBDT = 0.45 and
σRF = 0.451. Cycle 20 has A = 0 and the BDT out-
come is more accurate than that provided by the RF.
For the other cycles the values of σBDT are substan-
tially smaller than σRF .

The above results allow us to make the following
observations:

Figure 2. Distances DXY between aircraft pair A1 and A2 (subplot
1) along with the extrapolated probabilities of alerts PA (subplot 2)
over cycles 1 to 42. Posterior predictive probability densities of alert
for cycles 1 to 42 estimated by the existing RF (subplot 3) and pro-
posed BDT (subplot 4) methods.

Table 3. Standard deviations σ for RF and BDT methods.

k σRF σBDT PRF PBDT A

5 0.363 0.005 0.23 0.00 0
10 0.352 0.275 0.31 0.31 0
15 0.435 0.005 0.45 0.00 0
20 0.383 0.451 0.50 0.47 0
25 0.310 0.148 0.67 0.91 1
30 0.295 0.100 0.67 0.94 1
35 0.129 0.006 0.05 0.01 0

(1) Variations in model outcomes included in an
ensemble estimator reflect the ability of the estima-
tor to approximate the posterior probability density of
alert for a cycle.

(2) The standard deviation σ of the posterior
probability density estimated for a cycle reflects the
uncertainty in the prediction.

Given a threshold deviation σ0, we can find ra-
tios of alert and normal cycles which are assigned by
the RF and BDT estimators to the certain group. Fig 3
shows these ratios over the thresholds σ0. The trian-
gles and circles denote that the differences between the
certain and uncertain groups are significant in terms of
the extrapolated probabilities PA. The differences are

10



Figure 3. Ratios of alert (Red circles) and normal (Blue triangles)
cycles assigned to the certain group by the RF and proposed BDT
estimators: a and n are the ratios of alert and normal cycles, respec-
tively.

verified with a 2-sample Kolmogorov-Smirnov test at
a significance level α < 0.05.

The maximum rates of the certain alert and nor-
mal cycles, which are obtained with the RF and BDT
estimators, are aRF = 0.44,nRF = 0.84 and aBDT =
0.77,nBDT = 0.90, respectively. The Wilcoxon signed
rank test shows that in comparison with RF the pro-
posed BDT method provides a statistically significant
increase, p < 2 · 10−5, in the numbers of certain pre-
dictions.

Cycles assigned to the uncertain group can be vi-
sualised on a plane of distances D and time T of CPA,
calculated for given flight data. The scattering of cy-
cles which have been assigned to the uncertain group
by the RF and BDT estimators is plotted in Fig. 4 on
the right and left plots, respectively.

On these plots we can observe that the normal
cycles (in Blue) are scattered more widely and inten-
sively for the RF method than those assigned by the
BDT method. The alert predictions (in Red) are also
scattered more intensively for the RF method. This
means that the RF method providing a comparable
prediction accuracy tends to overestimate the uncer-
tainty in both the alert and normal predictions.

6.4. Interpretation of alert patterns

Following [71,72], we would like to consider how
models developed for alert predictions can be inter-
preted. This section provides an example of using DT
models for predicting patterns of interest. According
to our approach Fig. 2 shows the probabilities of alerts
for the RF and BDT methods. In this Figure we can

Table 4. A subtree predicting alert probability at cycle 2.

i vi qi p1 p2 xi

1 4 3543.75 0.00 1807.06
2 7 11.78 13.25
3 3 -1678.53 -1807.00
4 9 -247.36 0.00 273.00
5 10 0.00 0.04 26.68
6 8 -315.03 1.00 68.00
7 4 2276.87 0.77 0.09 1807.06

observe unexpectedly high alert probabilities PRF and
PBDT for cycles 1 and 2, which on average are 0.2 and
0.4 respectively. We can explain these events by the
following.

Let us first find the DT models that predict the
highest alert probability, which is 0.77 for cycle 2. The
proportion of such models is 9.1%. The high probabil-
ity predicted by these models is explained by the fol-
lowing. The flight data, represented in Table 1, include
the distance between aircraft pair, x4, which makes the
determining contribution to the prediction for cycle 2.

The prediction is made by a subtree path which
is shown in Table 4. This table represents the rules
i = 1, . . . ,7, indexes of input variables vi ∈ {1,12},
thresholds qi, terminal probabilities p1 and p2. The
subtree tests the rules and assigns the right branch if
xi > qi and the left branch if otherwise. The rules 1 and
7 contain the right-branch terminals with probabilities
of alert 0.00 and 0.09. The rules 4 to 7 contain the
left-branch terminals with the probabilities of alerts as
shown. For the given cycle 2, the input falls into the
left-branch terminal of rule 7 which assigns an alert
probability pBDT = 0.77. The distance x4 = 1807.06
is critically close to the threshold q = 2276.87, and so
the predicted probability remains high.

The above scenario can be used in a similar way
for interpretation of other patterns of interest.

7. Discussion

Alert systems are designed to predict critical events
when the “ground truth” is unavailable and the accu-
racy of alert predictions cannot be directly evaluated
from given data. Uncertainty which exists in the data
and models affects the accuracy in such an application
as air-traffic conflict avoidance using STCA systems
that aim to inform controllers about possible conflicts
in an intensive airport traffic environment. The uncer-
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Figure 4. Cycles assigned to the uncertain group spread over distances D and time T of CPA. The vertical axis shows the extrapolated alert
probabilities PA. Alerts are shown in Red, and normal cycles are in Blue. Predictions are assigned to the uncertain group by the RF and BDT
methods on the left and right plots, respectively.

tainty affects accuracy of predicting the coordinates of
aircraft and increases errors of alert prediction. There-
fore it is critically important to find new insights into
areas in which alert systems can be improved in the
absence of the ground truth.

In our study we used a probabilistic approach to
learn a model of an STCA system from recorded flight
data, and expect that such an approach is able to pro-
vide realistic insights into the uncertainty in alert pre-
dictions. The accurate identification of uncertain pat-
terns is required in order to find ways of improving
the accuracy of alert detection. Existing methods, out-
lined in Sections 1 and 2, are often based on unrealis-
tic assumptions which cannot be widely accepted for
analysing the uncertainty in alert predictions.

In our previous work, outlined in Section 1, more
realistic results have been achieved within a Bayesian
framework employing a new MCMC strategy of av-
eraging over Decision Tree models. In this study we
extend the Bayesian method, outlined in Section 5, to
address the problems of finding the uncertain patterns
in alert predictions.

In our experiments we used Heathrow flight data,
described in Section 3.1, which include recorded radar
tracks and other flight parameters of aircraft pairs as
input to the STCA system. We found in these data
alerts which have been predicted at different flight
conditions variations of which have exceeded the tech-
nical ability of the STCA system to keep the accuracy

of alert predictions. The experiments have been run
on 66 tracks of aircraft pairs with a high rate of alerts
which were rare in the normal operation, so that in to-
tal the 2,526 cycles were available. In such a case the
sensitivity of alert detection will be higher than that
estimated on the real flight data. This however can be
effectively managed by using an approach using DT
ensembles, as described in [73].

In addition to the core predictors listed in Table 1,
the current STCA systems use derived predictors. The
core predictors can be extended with, e.g., outcomes
of filters, as described in the guidelines [74]. The set
of predictors in our approach is not limited by the core
variables listed in Table 1, and so new features can be
added.

Following [54] we estimated the uncertainty as
variance in posterior predictive probability distribu-
tions of alerts. This allowed us to identify cycles
with large and small uncertainties for a given variance
threshold. The uncertain cycles were significantly dif-
ferent from the certain cycles in terms of probabilities
of alerts, which were predicted by using the distances
and time of CPA described in Section 4. Under certain
conditions, the linear trajectory extrapolation of flight
parameters of an aircraft pair approaching each other
provides realistic estimates of the distance D and time
T of CPA.

The proposed Bayesian method has provided a
sufficient accuracy of STCA modelling on the test
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flight data, which allowed us to estimate variances in
posterior probability densities of alerts and then find
cycles with high and low uncertainties which were as-
signed to two groups. We have shown that, given a
threshold variance, the proposed Bayesian method was
able to identify the two groups of patterns in which the
contribution to alert prediction is significantly differ-
ent.

The method has been compared with bootstrap
aggregation and demonstrated a statistically signifi-
cant (p < 2 · 10−5) increase in the numbers of certain
predictions. It is interesting to note that the improve-
ment in the accuracy of estimating the uncertainty can
be explained by the important property of Markov
chains used to explore model parameters, which al-
lows the MCMC sampler to quantify the uncertainty
more accurately than a technique based on bootstrap
aggregation.

As discussed in Section 1, the improvement of
operational characteristics of an STCA system is of
crucial importance because uncertainties existing in
flight data and the system affect the accuracy of alert
predictions. In order to analyse factors which affect
the results, the predictions that are made at high un-
certainty on the given data have to be identified and
analysed. The proposed method provides reliable esti-
mates of predictive posterior density for each predic-
tion in the following way. Patterns of interest, which
are identified as uncertain by the method, are repre-
sented by DT models. Each predicted outcome can be
therefore interpreted by a decision tree, that has the
maximum posterior probability. Such a tree consists
of k = 1, . . . ,kmax splitting nodes, where kmax is the
maximal number of nodes in the DT model. A tree
model includes the input variables {xi}k

1 and thresh-
olds {qi}k

1. The predicted outcome therefore can be ex-
plained by the input variables that make determining
contribution. An example of such an interpretation has
been given in Section 6.4.

8. Conclusions and Future Work

A new approach has been proposed to model alert sys-
tems on data which cannot include the “ground truth”.
In such applications, existing methods cannot provide
realistic insights into posterior predictive distributions
which are required for analysis. In our experiments
with Heathrow flight data including radar tracks of air-
craft pairs, we have observed that alerts were predicted
under different flight parameters, variations in which

often affect the ability of STCA system to maintain
accuracy of alert prediction.

The proposed Bayesian method has provided the
accuracy of modelling the STCA on the flight data,
sufficient for analysing the uncertainties in alert pre-
dictions. Estimating the variance in posterior predic-
tive probability distributions of alerts, we have iden-
tified cycles that have large uncertainty. The identi-
fied uncertain cycles were significantly different from
the certain cycles in terms of probabilities of alerts
which were predicted using the distances and time
of Closest Point of Approach. The proposed method
has been compared with bootstrap aggregation and
demonstrated a statistically significant increase (p <
2 ·10−5) in the numbers of certain predictions.

In our experiments the proposed approach has re-
alistically estimated the uncertainty of alerts and thus
can be used for modelling of alarm systems with the
aim of optimisation. We conclude that the Bayesian
method is capable of delivering tractable probabilistic
information about alerts and thus will be essential for
designing alert systems and other critical applications
in which the ground truth is unavailable.

Our research has been mainly focused on the re-
liable analysis of uncertainty in alert predictions. Sev-
eral questions have not been resolved and so can be
addressed in future work. First we think that nonlinear
extrapolation of the distance and time to the closest
point of approach will provide more realistic calcula-
tion of probability of alert PA. Inclusion of vertical sep-
aration in the extrapolation can also improve the accu-
racy of alert prediction. Another question which can be
also addressed is related to scalability of the method in
part of additional information existing in STCA sys-
tems, as discussed, e.g., in [74]. It will be undoubt-
edly interesting to extend the method with the abil-
ity of capturing trajectory dynamics, provided within
a rigorous framework for dynamic Bayesian networks
[36,75], whilst the use of Bayesian data fusion dis-
cussed in [76] seems to be also attractive for the future
work.

A. Time and Distance to Closest point of
Approach

Based on predicted positions and velocities of an air-
craft pair, the alert system generates an alarm if the
predicted distance between the aircraft becomes crit-
ical. The uncertainty in the data affects the accuracy
of alert detection. Besides, alert predictions are in-
fluenced by variations in the flight parameters of air-
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craft such as distance and velocities. The distribution
of alert events over distances can be estimated from
the recorded flight data in order to find a compromise
between the false and missed alert rates. The compro-
mise is consequently dependent on factors represent-
ing the flight data [28]. In particular, the relative ve-
locity with which the aircraft are approaching is one
such factor [30].

According to [27], distance and time of closet
point of approach (CPA) is estimated by using linear
extrapolation for each aircraft pair in the xy coordi-
nates. This method assumes the flight parameters of
the pair will not be changed in the immediate future
[46].

Given an aircraft pair A1 and A2 with positions
(x1,y1) and (x2,y2) in the xy-axes, the distance be-
tween the aircraft is

S =
√
(x2− x1)2 +(y2− y1)2. (2)

The angle between the aircraft is defined as

Qs = arctan
(y2− y1

x2− x1

)
. (3)

The relative velocity V with which the aircraft are
approaching is

V =
√
(vx,2− vx,1)2 +(vy,2− vy,1)2, (4)

where vx and vy are the velocities of the aircraft along
the x and y axes, respectively.

The angle between the velocity vectors of the air-
craft is

Qv = arctan
( vy,2− vy,1

vx,2− vx,1

)
. (5)

Having assumed that the above velocity V is un-
changed in the immediate future, the aircraft will cross
the CPA at the minimal distance D which is defined
according to the sine rule as:

D = S sin(Qs−Qv). (6)

According to this rule, the minimal D is the per-
pendicular from A1 to the line of the vector V . The
arrival time at the CPA is

T =
Scos(Qs−Qv)

V
. (7)

Note that after crossing the CPA, the distance D
and time T become negative. An alarm is raised if

the distance Di and time Ti estimated at a cycle i
are positive and their absolute values are smaller than
the predefined critical values D0 and T0: |Di| < D0 &
|Ti|< T0.

Fig. 5 plots the distances S and the velocities V
for the aircraft A1 and A2 along 42 cycles. The cycles
represent track 2 over the xy coordinates for the flight
data described in Section 3.1. The system has detected
13 alert cycles denoted by the Red stars.

In particular at cycle 1 the distance S between air-
craft A1 and A2 is 15.8 nmi. The aircraft have veloci-
ties V1 = 6.39 and V2 = 7.06, so that the relative veloc-
ity V = 7.06 The distance vector angle is Qs = 14.8◦

whilst the relative velocity vector angle is Qv = 13.1◦.
At cycle 1 the aircraft will approach the CPA with
distance D for this cycle is 0.48 nmi and the time
T = 134 s. This time is not critical and so the system
does not raise an alarm for cycle 1.

The first alert is detected at cycle 21 when the es-
timates D and T are less than the predefined critical
values D0 and T0. The initiated alert sequence ends at
cycle 33 as shown on Fig. 5.

Having undertaken a manoeuvre during the alert
cycles, both aircraft have urgently changed flight pa-
rameters. Cycle 35 which is two cycles after the last
alert is shown in Fig. 5. After crossing the CPA with
minimal distance at cycle 30, the aircraft at cycle 35
arrived at the new positions and the distance was in-
creased to S = 3.28. At this cycle the aircraft have ve-
locities V1 = 6.52 and V2 = 4.25 so that the relative
velocity V = 3.28 is nearly half that at cycle 1. After
the manoeuvre, the distance angle was significantly in-
creased to Qs = 241◦, so that the velocity vector angle
increased to Qv = 78.4◦. With the new flight parame-
ters the aircraft pair has then diverged, so that both the
distance D = −0.93 and time T = −50 are negative
after crossing the CPA.

The above model is based on linear extrapolation
and assumptions that flight parameters of the aircraft
pair are not changed in the time before crossing the es-
timated CPA. The model has been extended with ve-
locity acceleration as well as with resolution of ver-
tical conflicts [29]. A number of probabilistic exten-
sions has been undertaken [20].

Fig. 5 illustrates how the above geometrical ex-
trapolation is used for predicting an alert event proba-
bility. Section 6.3 provides details and the experimen-
tal settings for this technique.
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Figure 5. Distances S and the velocities V for the aircraft A1 and A2 along 42 cycles which represent track 2 over the xy coordinates. The 13
alert cycles (in Red) were detected by the STCA system.

B. Supplementary materials

The STCA data described in Section 3.1 are available
at http://figshare.com/articles/Flight_data/
5446681.
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