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Abstract. We present protocols and input data for Phase 1 of

the Global Gridded Crop Model Intercomparison, a project

of the Agricultural Model Intercomparison and Improvement

Project (AgMIP). The project includes global simulations of

yields, phenologies, and many land-surface fluxes using 12–

15 modeling groups for many crops, climate forcing data

sets, and scenarios over the historical period from 1948 to

2012. The primary outcomes of the project include (1) a de-

tailed comparison of the major differences and similarities

among global models commonly used for large-scale climate

impact assessment, (2) an evaluation of model and ensemble

hindcasting skill, (3) quantification of key uncertainties from

climate input data, model choice, and other sources, and (4)

a multi-model analysis of the agricultural impacts of large-

scale climate extremes from the historical record.

1 Introduction

Climate change presents a significant risk for agricultural

productivity in many key regions, even under relatively op-

timistic scenarios for near-term mitigation efforts (Rosen-

zweig et al., 2014). Consistent global-scale evaluation of

crop productivity is essential for assessing the likely impacts

of climate change and identifying system vulnerabilities and

potential adaptations. Over the last several years, many re-

search groups around the world have developed global grid-

ded crop models (GGCMs) to simulate crop productivity and

climate impacts at relatively high spatial resolution over con-

tinental and global extents, with a huge diversity of method-

ologies and assumptions leading to a wide range of results.

In 2012 and 2013, the Agricultural Model Intercomparison

and Improvement Project (AgMIP) (Rosenzweig et al., 2013)

led a global Fast Track climate impact assessment in coordi-

nation with the Inter-Sectoral Impacts Model Intercompari-
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Table 1. Models and groups engaged thus far for GGCMI.

Model Lead institution Contact(s) Model type and notes

pDSSAT a,c,d U of Chicago, USA jelliott@ci.uchicago.edu Site-based process (Elliott et al., 2014b) (DSSAT 4.5, Jones et al., 2003)

EPIC-Bokub,c,d Boku, Austria erwin.schmid@boku.ac.at Site-based process (EPIC v0810) (Balkovič et al., 2013)

GEPICb,c,d EAWAG, Switzerland folberth@iiasa.ac.at Site-based process (EPIC v0810) (Liu et al., 2007)

pAPSIM a,d U of Chicago, USA jelliott@ci.uchicago.edu Site-based process (APSIM v7.5)

(Elliott et al., 2014b; Keating et al., 2003)

EPIC-IIASAb,d IIASA, Austria khabarov@iiasa.ac.at Site-based process (EPIC v0810) (Balkovič et al., 2013)

EPIC-TAMUb,d TAMU and UMD, USA cizaurra@umd.edu Site-based process (EPIC v1102) (Izaurralde et al., 2006)

CropSyste WSU, USA stockle@wsu.edu Site-based process (Stöckle et al., 2003)

DAYCENTe Colorado State, USA dennis.ojima@colostate.edu Site-based process (Stehfest et al., 2007)

LPJmLc PIK, Germany cmueller@pik-potsdam.de DGVM (Bondeau et al., 2007; Müller and Robertson, 2014)

ORCHIDEE IPSL, France nathalie.de-noblet@lsce.ipsl.fr DGVM (de Noblet-Ducoudre et al., 2004)

ORCHIDEE-crop LSCE-IPSL, France philippe.ciais@lsce.ipsl.fr DGVM (Valade et al., 2014)

LPJ-GUESSc KIT, Germany almut.arneth@kit.edu DGVM (Lindeskog et al., 2013; Smith et al., 2001)

JULES-crope Met Office, UK pete.falloon@metoffice.gov.uk DGVM (Van den Hoof et al., 2011)

CLM-Crop LBNL, USA adjones@lbl.gov DGVM (Levis et al., 2012; Drewniak et al., 2013)

PEGASUSc Tyndall, UEA, UK d.deryng@uea.ac.uk Empirical/process (Deryng et al., 2011, 2014)

GLAMe SEE, Leeds, UK a.j.challinor@leeds.ac.uk Empirical/process (Challinor et al., 2004)

CGMS WUR, NL allard.dewit@wur.nl Empirical/process (WOFOST) (van Diepen et al., 1989; Supit et al.,

1994)

PRYSBI-2 NIAES, Japan iizumit@affrc.go.jp Empirical/process (Okada et al., 2011)

MCWLAe IGSNRR, China taofl@igsnrr.ac.cn Empirical/process (Tao and Zhang, 2012)

ISAM UIUC, USA jain1@illinois.edu DGVM (Song et al., 2013)

DLEM-Ag Auburn U, USA renwei@auburn.edu DGVM (Gueneau et al., 2012)

a pDSSAT and pAPSIM are both part of the parallel System for Integrating Impact Models and Sectors (pSIMS) framework, using inputs and assumptions harmonized as closely as is possible, allowing

for a more direct comparison of inter-model differences. b Four contributing GGCMs are built from the field-scale EPIC model and will be used for detailed explorations of the effects of different

assumptions and configurations within the same model. c Model participating in the 2012/2013 AgMIP/ISI-MIP Fast Track. d EPIC-, DSSAT-, and APSIM-based models will perform additional scenarios

using alternative methods to model evapotranspiration in order to better understand the effect this important model choice has on assessments e Models expected to participate starting in Phase 2.

son Project (ISI-MIP) (Warszawski et al., 2014) that brought

together a group of GGCMs to simulate future crop produc-

tivity under various climate change and farm management

scenarios (Elliott et al., 2014a; Rosenzweig et al., 2014; Pi-

ontek et al., 2014; Nelson et al., 2014). Increased applica-

tion of crop growth models for global-scale analyses and the

wide variation in model assumptions and projected outputs

found in the Fast-Track assessment inspired the launch of the

AgMIP GRIDded crop modeling initiative (Ag-GRID) and

the Global Gridded Crop Model Intercomparison (GGCMI).

We define here the simulation protocol for the first phase of

the GGCMI, which is designed to, among other things, en-

able comprehensive evaluation of model and ensemble skill

– with respect to yield levels, variability, and large-scale ex-

treme events – based on comparisons of simulations and ob-

servations over the last several decades.

The GGCMI Phase 1 simulation protocol includes partic-

ipants that run a number of gridded crop models (listed with

contacts and short descriptions in Table 1), driven with con-

sistent inputs based on multiple weather data products (to

evaluate uncertainties from weather data) and harmonized

management practice data (planting date, growing season

length, and fertilizer inputs). The results of these different

simulation runs will then be compared to three distinct refer-

ence data sets derived from census and remote sensing data

sources (Ray et al., 2013; Iizumi et al., 2013; FAOSTAT data,

2013). GGCMI is a protocol-based simulation experiment for

gridded crop models and is open to the participation of any

model group that simulates crop productivity at the global

scale, including models developed for field-scale application,

biogeochemical dynamic global vegetation and land-surface

scheme models, empirical-process-based hybrid models, and

statistical models.

In the modeling protocol presented here, we describe the

simulation experiments and priorities, central inputs pro-

vided to modelers, required outputs to be provided by mod-

eling groups, and data format conventions. GGCMI proto-

cols are designed to overlap as much as possible with and

contribute to the refinement of the modeling protocols of the

next phase of ISI-MIP (ISI-MIP2). Modelers participating in

GGCMI can directly participate in ISI-MIP2 if they so de-

sire.

2 Simulation experiments, models, and objectives

The primary goals of Phase 1 of the GGCMI are

1. intercomparison of models with and without harmo-

nized inputs and assumptions, and with and without ex-

plicit nitrogen stress;

2. evaluation of model and ensemble skill over the histori-

cal period;

3. detailed characterization of important uncertainties

(weather data, management systems, evapotranspiration
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Table 2. Priority 1 and 2 crops in Phase 1, along with the number of models expected to contribute results for each crop.

Priority Crops Labels No. of

models

Notes

1 Wheat, maize, soy, rice whe, mai, soy, ric 15–20 Required for all objectives

2 All others: Managed grass∗, sugarcane,

sorghum, millet, rapeseed, sugar beets, bar-

ley, cassava, field peas, sunflower, ground-

nuts, dry bean, cotton, potatoes

mgr, sug, sor, mil,

rap, sgb, bar, cas,

pea, sun, nut, ben,

cot, pot

Based on

availability

(> 2)

Priority 2 crops will be consid-

ered case-by-case (require at

least three model submissions)

∗ We consider only managed grassland productivity, not unmanaged pasture.

methods, and output processing techniques) in histori-

cal crop yield analysis and the implication of these for

future climate impact assessment; and

4. multi-model, multi-forcing analysis of the agricultural

impacts of large-scale extremes (primarily drought and

heat events) in the historical record.

Groups are asked to simulate agricultural productivity for

various crops under purely rain-fed as well as fully irrigated

conditions for different driving input data sets on weather

and management. To avoid overtaxing of modeling groups,

we define simulation priorities to facilitate central analyses

with an as broad as possible group of GGCMs as well as ad-

ditional analyses of more specific questions (the performance

of crop models for crops beyond wheat, maize, rice, soy; the

influence of weather data uncertainty on model performance;

and the impact of different evapotranspiration methodologies

on model response and model skill in different regions and

agro-climatic zones).

2.1 Crops and management systems to simulate

We define a two-tiered priority structure that takes into ac-

count both the crops that are most important for questions

of (primarily global) food security and economics, and the

crops that are most commonly simulated in available mod-

els. The three main cereal crops (maize, wheat, and rice)

alone account for about 43 % of total food energy intake

(FAOSTAT data, 2013). Along with soybeans, which are the

largest single source of oilseeds globally and an essential

source of protein and animal feed, these crops have been the

focus of most crop yield and climate impact modeling work,

and are generally simulated by all the models participating in

GGCMI. Thus, we define them as our Priority 1 crops, rep-

resenting the minimum set for our analyses (Table 2). Many

other crops are important staple food, feed, or energy crops

in economically or climate-sensitive regions, and most con-

tributing models within GGCMI do simulate one or more of

these secondary (or Priority 2) crops. In order to consider as

many crops as possible, we ask modelers to supply data on

all crops that they can simulate, and consider any crop sim-

ulated by at least three models as valid for a multi-model

intercomparison analysis. The participating models cover a

broad range of annual crops as well as managed grassland,

but provide no modeling capacities for perennial crops (Ta-

ble 2).

We define three distinct types of model configurations (Ta-

ble 3) for the simulations in Phase 1. First, each group is

to develop their own “default” configuration based on the

management and technology assumptions and inputs they

typically use for simulations in the historical period. Each

group must also prepare a “harmonized” configuration us-

ing input data, parameters, and definitions provided by the

GGCMI coordinators. Finally, each model that considers ni-

trogen (whether with explicit fertilizers or an empirical cali-

bration) is also to be run in a configuration without nitrogen

stress, “harmnon”, to allow for direct comparison with mod-

els that do not explicitly consider the nitrogen cycle. We de-

fine the “hamrnon_firr”, which has zero (or near-zero) stress

from both nitrogen and water, as “potential yield” for the pur-

pose of defining yield gaps and related analyses.

All modelers are asked to simulate all crops across the

globe, irrespective of current cropping areas for purely rain-

fed as well as irrigated conditions. This approach allows for

addressing uncertainties in assumed distributions of cropland

in post-processing analysis. The minimum spatial extent of

historical simulations is current agricultural land, and we re-

quire that all crops be simulated on all agricultural lands,

rather than just on the land where they are currently grown.

We assume that irrigated systems are not limited by fresh-

water availability and have no water losses during con-

veyance and application. While the latter assumption has no

implications for crop growth, it helps to make reported irri-

gation water quantities comparable across models.

Table 4 summarizes the outputs requested from GGCMI

simulations. We require that all models provide two cen-

tral outputs, dry matter equivalent crop yield and (for irri-

gated scenarios) total irrigation water requirements. Due to

the unique characteristics of different models, few other out-

put variables are available to be contributed by all groups.

Rather than limit the project only to those variables that are

universally produced (crop yields and applied irrigation wa-

ter), we list in Table 4 as many additional optional outputs as

possible. These optional outputs include, for example, above-

www.geosci-model-dev.net/8/261/2015/ Geosci. Model Dev., 8, 261–277, 2015
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Table 3. General simulation configurations for Phase 1.

Config Long name Description

Default Default configuration Simulations using default “best guess” choices for all inputs

fullharm Fully harmonized configuration Simulations using harmonized inputs and assumptions

harmnon Harmonized with no nitrogen Harmonized inputs with no nitrogen stress

Table 4. Output variables to be collected during GGCMI Phase 1. The first two variables are to be provided by every model; other variables

are to be provided as possible by each model

Variable Variable name∗ Units (and notes)

Mandatory variables to be provided for all simulations

Crop yields yield_<crop> t ha−1 yr−1 (dry matter)

Applied irrigation water pirrww_<crop> mm yr−1 (firr only, assume loss-free con-

veyance/application)

Additional variables below are to be provided as possible by each model

Total above-ground biomass yield biom_<crop> t ha−1 yr−1

Actual growing season evapotranspiration aet_<crop> mm yr−1 (season only)

Actual planting date plant-day_<crop> day of year

Days from planting to anthesis anth-day_<crop> days from planting

Days from planting to maturity maty-day_<crop> days from planting

Nitrogen application rate initr_<crop> kg ha−1 yr−1

Nitrogen leached leach_<crop> kg ha−1 yr−1

Nitrous oxide emissions sn2o_<crop> kg N2O-N ha−1

Accumulated precipitation, plant to harvest gsprcp_<crop> mm ha−1 yr−1 (season only)

Growing season incoming solar gsrsds_<crop> W m−2 yr−1 (season only)

Sum of daily mean temperature, planting to harvest sumt_<crop> ◦C days yr−1 (season only)

∗ <crop> refers to the three-letter variable codes (whe, mai, ric, etc.) from Table 2.

ground biomass, accumulated water applied and transpired,

accumulated nitrogen applied and lost through leaching, key

phenological dates, and growing season climate characteris-

tics. This approach will facilitate better analyses and inter-

pretation of results and will allow GGCMI participants to

further leverage the archives for scientific deliverables and

overall project impacts.

We ask that modelers archive model versions used for the

simulations and all primary outputs generated, in order to al-

low for reproducibility and facilitate extraction of additional

or more detailed (e.g., higher temporal resolution) data that

may be found to be necessary for analyses not yet planned.

As far as possible for the models, all modelers should sup-

ply yield and irrigation water amounts for at least the four

main crops: wheat, maize, rice and soy (Table 2). Simula-

tions should be conducted for default and harmonized man-

agement assumptions as well as for different weather data

sets. If modeling capacities are constrained, modelers should

supply at least the four Priority 1 crops (Table 2) and selected

weather-management combinations to allow for a compre-

hensive model intercomparison across a limited set of sce-

narios and for analyses of input and assumption uncertainties

with those models that contributed (Table 5). Priority 1 de-

notes the minimum simulations required for participation un-

less model capacities do not allow for covering the full spec-

trum of Priority 1 simulations (e.g., because not all crops are

implemented, or because a model requires special weather

data inputs).

Priority 2 includes two distinct simulation tracks designed

around specific science objectives and expected publications.

Simulations in the “climate track” (Priority 2.1) are designed

to evaluate differences among the forcing products through

an agro-climatic lens, enabling assessment of the relative

importance of different reanalysis products, bias-correction

techniques, and target data sets used for bias-correction. The

“crop track” (Priority 2.2) will allow us to expand our anal-

ysis to crops that have not been studied as thoroughly as the

primary four food crops or that are only important region-

ally or in non-food contexts (such as energy crops). This ex-

panded set is expected to include managed grass, sugarcane,

sorghum, millet, rapeseed, sugar beet, and cassava.

Geosci. Model Dev., 8, 261–277, 2015 www.geosci-model-dev.net/8/261/2015/
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Table 5. Simulation priorities for Phase 1. For climate product descriptions see Table 9.

Priority Crops Climate product Scenarios Goal

Priority 1 P1 WFDEI.GPCC,

AgMERRA

Default, fullharm,

harmnon

Establish key minimal yield estimates and compar-

isons

Priority 2 P1 WATCH.GPCC, PGF,

GRASP, AgCFSR

fullharm Extend range of years and characterize uncertainty

due to multiple forcing products

2.1 Climate

track

P1 WFDEI.CRU,

ERA-I and CFSR

fullharm Evaluate the effects of different drivers (pure reanal-

ysis, GPCC vs. CRU target for bias-correction, etc.)

2.2 Crop

Track

P2 WFDEI.GPCC,

AgMERRA

fullharm Evaluate other crops that have a sufficient number of

models and interest

2.2 Conventions for simulation outputs

In order to facilitate analysis, portability, and processing

of outputs, results will be collected in compressed, self-

describing NetCDF v4 files with consistent and relatively

simple data, metadata, and file-naming conventions de-

scribed below.

2.2.1 File names

Each file must contain a single output variable and be named

according to the following convention (see definitions in Ta-

ble 6):

[model]_[climate]_[clim.scenario]_[sim.scenario]_

[variable]_[crop]_[timestep]_[start-year]_[end-year].nc4

For example,

pdssat_watch_hist_default_noirr_yield_mai_

annual_1958_2001.nc4

2.2.2 Geographical extent

Data must be submitted for the ranges 89.75 to −89.75◦ lati-

tude, and −179.75 to 179.75◦ longitude. Thus, each file will

contain 360 rows and 720 columns for a total of 259 200 grid

cells. All ocean grid cells must be filled with the fill value

(Table 7). Modelers need not simulate Greenland, the Arctic,

or Antarctica but must submit output completely filled for

the entire range from latitude 89.75 to −89.75. Output data

must be reported row-wise starting at 89.75 and −179.75,

and ending at −89.75 and 179.75. As is standard in NetCDF

files, latitude, longitude, and time must be included as vari-

ables in each file explicitly defining their extent.

2.2.3 Date reporting convention

The analysis of inter-seasonal variability of crop yields is

complicated by reporting conventions involving the assign-

ment of reported production to calendar years. This issue is

especially problematic in the Southern Hemisphere, where

harvest sometimes occurs in a window around 31 Decem-

ber so that assignment to calendar years based on the harvest

date gives double harvests (e.g., one in early January and the

next in late December of the same calendar year) in some

years and no harvest in others. The data reporting conven-

tion for GGCMI thus is not calendar year but growing sea-

son based. That is, results are to be reported as a sequence of

growing seasons, irrespective of whether that growing sea-

son actually spans 2 calendar years or if harvests occur just

before or just after 31 December. Cumulative growing sea-

son variables as, e.g., actual evapotranspiration or precipita-

tion are to be accumulated over the growing season, again

irrespective of any calendar year definitions, and are to be

reported in the same sequence as the harvest events (yield,

above-ground biomass). The unit of the time dimension of

the NetCDF v4 output file is thus “growing seasons since

YYYY-01-01 00:00:00” (Table 7). The first season in the file

(with value time= 1) is then the first complete growing sea-

son of the time period provided by the input data without any

assumed spin-up data, which equates to the growing season

with the first planting after this date. This convention roughly

corresponds to an annual reporting scheme but allows for a

better separation and analysis of outputs. The artificial sepa-

ration of harvest seasons into 2 different calendar years may,

however, also be present in observational data and may com-

plicate evaluation of model skills in these regions anyway.

3 Central input data

In order to ensure comparability of simulation results across

models and to investigate the importance of uncertainties

with respect to weather and management data, we sup-

ply central input data to all participating modelers. The

GGCMI Phase 1 protocols include a set of assumptions, def-

initions, and input data products that will be used to harmo-

nize participating models as closely as possible in the full-

harm and harmnon configurations (Table 8). During project

pre-planning we established data sharing arrangements with

leading agricultural data groups that will contribute global

high-resolution crop-specific data on key management inputs

covering sowing dates, growing season length, fertilizer ap-

plication rates (including nitrogen, phosphorus, and potas-

sium), manure use, and historical atmospheric CO2 concen-

tration. We will also harmonize a set of definitions and pa-

rameter choices among models, ensuring that output data

www.geosci-model-dev.net/8/261/2015/ Geosci. Model Dev., 8, 261–277, 2015
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Table 6. Filename conventions for standardized model outputs.

Filename tag [] Values

[model] pdssat, epic-iiasa, lpjml, etc. (see Table 1)

[climate] watch, wfdei.gpcc, wfdei.cru, grasp, agmerra, agcfsr, Princeton (see Table 9)

[clim.scenario] Hist

[sim.scenario] default_firr, fullharm_noirr, etc. (simulation configuration, see Table 3 and irriga-

tion setting (firr or noirr))

[variable] yield, pirrww, plant-day, anth-day, etc. (see Table 4)

[crop] mai, soy, whe, ric, mil, sor, etc. (see Table 2)

[timestep] annual

[start-year]_[end-year] 1958_2001, 1980_2009, 1980_2010, etc. (see Table 9)

Table 7. NetCDF file dimension, variable, and attribute info.

Dimension/variable Fill value No. type Units Range

Longitude NA double degrees east −179.75. . . 179.75

Latitude NA double degrees north 89.75. . .−89.75

Time NA double “growing seasons since YYYY-01-01

00:00:00”

(YYYY varies, see Table 9)

1. . . T (T varies, see Table 9).

[variable]_[crop] 1.e+ 20f float varies (see Tables 2 and 4). varies

are directly comparable to the greatest extent possible. All

GGCMI input data described here can be accessed at https:

//rdcep.org/ggcmi/data.

3.1 Weather data inputs

In total we will use six historical retrospective-analysis-

based forcing data sets (bias-corrected at monthly timescales

against observational products such as CRU and GPCC) and

two raw (non-bias-corrected) reanalysis products (Table 9).

Within the cropping areas of the major crops, these weather

products display some uncertainty with respect to mean and

variability of weather variables such as temperature (Fig. 1)

and precipitation (Fig. 2). We do not strictly harmonize spin-

up procedures for those models that require it; however, we

provide the Princeton global forcing data set for years af-

ter 1948, and a decade of generic pre-industrial weather that

can be used for all preceding years. We also consider two

versions of WFDEI, with biases corrected separately using

either the GPCC or CRU data as targets, for a total of nine

distinct data products and about 350 years of daily data. In

total, this collection provides one or more weather data in-

puts for every year from 1948 to 2012. All products cover

the 30-year period from 1980 to 2009 (which will serve as

our primary analysis period) except WATCH (1958–2001)

and Princeton (1948–2008). Each data set is provided at daily

resolution and one product (WFDEI) is additionally provided

at 3-hourly resolution for those models that require sub-daily

data.
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Figure 1. Area-weighted mean of annual temperatures [◦C] for

cropping areas for rain-fed wheat (a), rice (b), maize (c), and

soy (d).

Different GGCMs can require different weather variables,

which are supplied by the different forcing data sets. Mod-

els that require weather variables not included in some data

products (e.g., long-wave downward radiation, Table 10)
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Table 8. Harmonized input variable sources for fullharm and harmnon configurations in Phase 1.

Variable Source Units Notes

Planting window Sacks et al. (2010), Port-

mann et al. (2008, 2010) and

environment-based extrapola-

tions

Julian days

(Jan 1= 1,. . . )

Crop calendar data (planting and maturity) for pri-

mary seasons

Approximate maturity Sacks et al. (2010), Port-

mann et al. (2008, 2010) and

environment-based extrapola-

tions

Days/GDD from

sowing

Growing season length provided in number of

days

Fertilizers and manure Mueller et al. (2012), Potter et

al. (2010), Foley et al. (2011)

kg ha−1 yr−1 Average nitrogen, phosphorus, and potassium ap-

plication rates in each grid cell

Historical [CO2] Mauna Loa/RCP

historical

ppm Annual and monthly [CO2] values from 1900 to

2013.

Definition of time Protocol choice “growing seasons

since YYYY-01-

01”

YYYY is just the first year in the file. For a run

1958–2001, YYYY= 1958. Values of time are in-

dependent of how growing season is assigned to

calendar year.

Season definition Protocol choice Definition AET and PirrWW defined as accumulated over the

growing season, not over the calendar year

Automatic irrigation Guidance for parameter

choices

Definition Management depth= 40 cm/Efficiency= 100 %

Lower event trigger threshold= 90 %

Max single AND annual volume=Unlimited

should use the equivalent variable from another data set. As

weather variables are bias-corrected individually and there

is consequently no consistency between the individual vari-

ables within one data set, and as all data refer to the historic

period, we assume that the errors introduced by this approach

are small.

3.2 Harmonized growing season definitions

We supply harmonized growing season data (planting and

maturity dates) for all Priority 1 crops (wheat, maize, rice,

soybeans, see Table 2) plus data for the Priority 2 crops bar-

ley, cassava, groundnuts, millet, potatoes, pulses (dry bean,

field peas), rapeseed, rye, sorghum, sugar beets, sugarcane,

and sunflower. Of the Priority 2 crops, we lack information

for cotton, while managed grassland is assumed to grow all

year round. We compile growing season data from two ex-

isting global crop calendars, MIRCA20001 (Portmann et al.,

2010) and SAGE2 (Sacks et al., 2010), supplementing those

data with a rule-based approach as implemented in LPJmL3

(Waha et al., 2012) to provide as much coverage of the global

land surface as possible.

1Available for download at ftp://ftp.rz.uni-frankfurt.de/

pub/uni-frankfurt/physische_geographie/hydrologie/public/

data/MIRCA2000/growing_periods_listed/CELL_SPECIFIC_

CROPPING_CALENDARS_30MN.TXT.gz
2Available for download at http://www.sage.wisc.edu/

download/sacks/netCDF0.5degree.html
3Available for download at the ISI-MIP Fast Track archive http:

//esg.pik-potsdam.de

3.2.1 Methodology

We use data from two global cropping calendars,

MIRCA2000 (Portmann et al., 2010) and SAGE (Sacks et

al., 2010), for current cropping regions (or administrative

units with cropping activity). To fill areas not covered

by MIRCA2000 and SAGE, we use the planting and

harvest dates as computed by LPJmL (Waha et al., 2012)

as implemented for the ISI-MIP Fast Track (Müller and

Robertson, 2014; Rosenzweig et al., 2014). Table 11 shows

the availability of crops in the crop calendar data sets and

the crops used from LPJmL.

MIRCA2000 data supply up to five growing periods per

pixel, each with a specific area. For each pixel, we choose

the growing period with the largest area. SAGE data sup-

plies median planting and harvest dates as well as beginning

and end of planting/harvest. We use the median dates. Be-

cause MIRCA2000 has monthly resolution only, assuming

the first of the month for planting dates and the last of the

month for harvest dates, we use SAGE data with daily reso-

lution where available, and MIRCA2000 data only in regions

where no SAGE data are available. We ignore MIRCA2000

data if growing seasons are longer than 330 days (e.g., wheat

in large parts of Russia), except for sugarcane, which is

recorded to grow all year round in MIRCA2000. Finally, we

use LPJmL data to fill remaining areas globally with climate-

driven rule-based estimates covering a large subset of Prior-

ity 1 and 2 crops.

To estimate growing season length, we use harvest dates

from the same data set selected for planting dates. In order

www.geosci-model-dev.net/8/261/2015/ Geosci. Model Dev., 8, 261–277, 2015

ftp://ftp.rz.uni-frankfurt.de/pub/uni-frankfurt/physische_geographie/hydrologie/public/data/MIRCA2000/growing_periods_listed/CELL_SPECIFIC_CROPPING_CALENDARS_30MN.TXT.gz
ftp://ftp.rz.uni-frankfurt.de/pub/uni-frankfurt/physische_geographie/hydrologie/public/data/MIRCA2000/growing_periods_listed/CELL_SPECIFIC_CROPPING_CALENDARS_30MN.TXT.gz
ftp://ftp.rz.uni-frankfurt.de/pub/uni-frankfurt/physische_geographie/hydrologie/public/data/MIRCA2000/growing_periods_listed/CELL_SPECIFIC_CROPPING_CALENDARS_30MN.TXT.gz
ftp://ftp.rz.uni-frankfurt.de/pub/uni-frankfurt/physische_geographie/hydrologie/public/data/MIRCA2000/growing_periods_listed/CELL_SPECIFIC_CROPPING_CALENDARS_30MN.TXT.gz
http://www.sage.wisc.edu/download/sacks/netCDF0.5degree.html
http://www.sage.wisc.edu/download/sacks/netCDF0.5degree.html
http://esg.pik-potsdam.de
http://esg.pik-potsdam.de
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to estimate the maturity date (which characterizes crop va-

rieties) from the harvest date, we correct for crop-specific

times between harvest and maturity, assuming that maturity

in models refers to the development stage in which the green

leaf area index is zero (“fully ripe”; BBCH code 89)4. Where

no information on differences between harvest and maturity

dates could be found, we assume no difference (Table 11 con-

tains details by crop).

In regions where no crop calendar supplies data, we use

simulated phenology from LPJmL. Here, we mark planting

dates as unreasonable if planting in cool regions occurs be-

fore day 90 or after day 274 in the Northern Hemisphere or

between days 152 and 304 in the Southern Hemisphere. We

define cool regions as those in which the annual mean of

monthly maximum temperatures according to the WATCH

data average for 1991–2000 is only 3 ◦C above the crop-

specific base temperature. In these areas, GGCMI modelers

can choose any planting date or skip the simulation as results

will not be evaluated. Generally, all anticipated analyses will

consider current cropland areas only, for which data are gen-

erally available from crop calendars. Data filling with rule-

based algorithms is only meant to harmonize assumptions

among models and to enable standard all-crops-everywhere

simulations.

We also mask harvest dates as unreasonable where crops in

regions filled with rule-based LPJmL data do not reach ma-

turity within a prescribed crop-specific maximum growing

season length, where crops die after less than 60 days, where

freezing (Tmin of WATCH data average for 1991–2000 be-

low 0 ◦C) occurs in the month prior to maturity, or where

planting dates are unreasonable.

If the LPJmL growing season occurs in very hot seasons

(defined as those for which Tmax of WATCH data aver-

age for 1991–2000 in one of the growing season months is

> 38 ◦C), we assume that the growing season of temperate

cereals (barley, rye, wheat) is offset by 6, +3 or −3 months

to avoid the heat. Offsets are tested in this sequence and the

first that actually reduces maximum monthly temperatures to

at least below 36 ◦C is selected. Avoidance of heat is not part

of the rules implemented in LPJmL (Waha et al., 2012) and

may imply that corrected sowing does not happen during the

wettest season. Since these areas are not currently cropped

(otherwise there would be crop calendar data), it seems jus-

tifiable to correct sowing dates for cooler seasons for harmo-

nized simulation data.

SAGE calendar data are uniform within administrative

units. If the SAGE data set suggests that planting in currently

unused grid cells would occur in autumn but mean monthly

temperatures are already below 5 ◦C, we correct planting

dates for the planting of spring varieties. For this correction,

we select the first month, starting in January for the North-

ern Hemisphere and in July for the Southern Hemisphere, in

4http://en.wikipedia.org/wiki/BBCH-scale_cereals

which average monthly temperatures (Tas of WATCH data

average for 1991–2000) rise above 5 ◦C.

The R processing script that we used to generate these data

are available in the appendix and in the GGCMI software

repository at https://github.com/RDCEP/ggcmi/.

3.2.2 Implementation instructions for growing

season dates

GGCMI modelers should implement planting dates per grid

cell, per crop, and per irrigation system (purely rain-fed vs.

irrigated) either directly or with a given flexibility within

model-specific planting windows. In regions in which the

harmonized planting dates as supplied here are masked as

unreasonable, crop modelers may either set planting dates

to any date or simply skip simulations, whichever is easier

to implement. These data will not be considered in GGCMI

analyses.

Crop variety parameters (e.g., required growing degree

days to reach maturity, vernalization requirements, photope-

riodic sensitivity) should be adjusted as much as possible to

roughly match reported maturity dates supplied here for the

average of the period 1991–2000. In regions in which harvest

dates are masked as unreasonable, modelers should parame-

terize their fastest maturing crop variety as these stand best

chances to reach maturity at all.

3.3 Harmonized fertilizer inputs

We supply average annual nitrogen (N-equivalent), phospho-

rus (P2O5-equivalent), and potassium (K2O-equivalent) ap-

plication rates (kg ha−1 yr−1) for 15 crops and all locations.

We supply crop-specific fertilization rates for the Priority 1

crops (Table 1), a broad set of Priority 2 crops (cassava, cot-

ton, groundnuts, millet, potatoes, rapeseed, sorghum, sugar

beets, sugarcane, sunflower), and for one perennial crop, cof-

fee. Fertilizer data are based on published data on mineral

fertilizers and manure applications (Mueller et al., 2012; Pot-

ter et al., 2010; Foley et al., 2011). These data are available

for currently cropped areas and have been extrapolated in

space to cover the entire land surface.

3.3.1 Methodology

We compiled and harmonized fertilizer data in a four-step

procedure. First, we disaggregated manure data into crop-

specific application rates. This was done by assigning a pro-

portion of the manure nutrient production from Potter et

al. (2010) to croplands as outlined in Foley et al. (2011). Of

manure applied to croplands, crop-specific application was

determined by dividing manure application in each grid cell

between all crops present in the grid cell, in proportion to the

harvested area of each crop.

We aggregate data from the original 5 arc minute resolu-

tion to the GGCMI simulation grid of 0.5◦× 0.5◦. The po-

litical units in the original mineral fertilizer data set differ

Geosci. Model Dev., 8, 261–277, 2015 www.geosci-model-dev.net/8/261/2015/

http://en.wikipedia.org/wiki/BBCH-scale_cereals
https://github.com/RDCEP/ggcmi/
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Table 9. Historical climate forcing data sets for Phase 1.

Data set Reanalysis Years Resolution∗ Bias-correction target Notes

WATCH (WFD) ERA-40 1958–2001 2.5◦ (0.5◦) GPCC WATCH Forcing Data (WFD) (Weedon

et al., 2011)

WFDEI ERA-Interim 1979-2010

(GPCC)

1979–2012

(CRU)

0.75◦ (0.5◦) GPCC and CRU as sep-

arate versions

Versions with different bias tar-

get are denoted WFDEI.GPCC and

WFDEI.CRU (Weedon et al., 2014)

GRASP JRA-25 & ERA-40 1961–2010 1.125◦ (1.125◦) CRU-TS3.10, CL1.0

wind, SRB solar

Mean/max/min 2 m temp, precip, so-

lar, vap pres., 10 m wind (Iizumi et al.,

2014)

AgMERRA MERRA 1980–2010 0.5◦× 0.66◦

(0.5◦/0.25◦)

CRU/GPCC/UDel/

SRB/Satellite precip

Precip: CMORPH, PERSIANN,

TRMM. Out: Tmax/min, precip, solar,

RHS at Tmax, wind (Ruane et al.,

2015)

AgCFSR CFSR 1980–2010 0.3◦

(0.5◦/0.25◦)

Same as AgMERRA Same target as AgMERRA (Ruane et

al., 2015)

Princeton GF NCAR Reanalysis 1 1948–2008 2.8◦ (0.5◦) CRU/GPCC/SRB/

TMPA

TMPA: TRMM Multi-satellite Precipi-

tation Analysis (Sheffield et al., 2006)

Pure reanalysis products (for evaluation of the effects of bias-correction)

CFSR CFSR 1979–2012 0.3◦ (NA) NA Pure reanalysis (Saha et al., 2010)

ERA-I ERA-I 1979–2012 0.75◦ (NA) NA Pure reanalysis (Dee et al., 2011)

∗ This denotes the resolution of the underlying reanalysis data set (and in parentheses the typical resolution of the key target data, temperature, and precipitation, used in the bias-correction). All

data sets will be standardized to a 0.5× 0.5◦ spatial resolution in the GGCMI archives.

for each crop type and cover current crop-specific growing

areas, up to 473 units for the maize nitrogen fertilizer data

(Mueller et al., 2012). Therefore we harmonized the admin-

istrative boundary units across crop and nutrient types for

the interpolation procedure here. Data on manure application

(Potter et al., 2010) have resolution finer than political units,

as they are based off a gridded livestock data set. Thus, the

manure nutrient maps were simply aggregated to each of the

372 administrative units as an area-weighted average.

In a third step, we harmonized the reference units between

organic and inorganic fertilizers (manure). Original manure

data are reported in terms of atomic nitrogen (N) and phos-

phorus (P) and assumed to contain no potassium (Potter et

al., 2010), whereas inorganic fertilizer data are reported as

N, phosphate (P2O5), and potassium oxide (K2O). The con-

version from P manure to P2O5 is based on atomic masses

P2O5− eq.= P/31× (31× 2+ 5× 16). (1)

Nutrients from manure are generally less available to

plants than mineral fertilizers. We assume 60 % of applied

N-manure and 75 % of applied P-manure to be plant avail-

able (Rosen and Bierman, 2005).

In the final step, we extrapolated fertilizer application

rates to currently uncultivated land. The original data on

mineral fertilizers (Mueller et al., 2012) cover only crop-

specific harvested areas. First, we assigned the national aver-

age nutrient-specific fertilizer rate (area-weighted) to all ad-

ministrative units that do not apply any mineral fertilizer or

manure in the original data but are within a country that does

reporting fertilizer application. Second, for all other coun-

tries that do not currently apply fertilizer to grow the spe-

cific crop, we attributed estimated nutrient-specific applica-

tion rates by averaging fertilizer application rates over the

corresponding income level group. We base income level

groups on the World Bank’s definition to classify countries

by income level: economies are divided according to 2012

gross national income per capita, calculated using the World

Bank Atlas method5. The groups are as follows: low income,

USD 1035 or less; lower middle income, USD 1036–4085;

upper middle income, USD 4086–12 615; and high income,

USD 12 616 or more. We averaged fertilizer application rates

for all countries with fertilizer applications of larger than

zero within the income level group and applied those rates

to all countries without fertilizer data within that group.

3.3.2 Implementation instructions

All fertilizer data supplied here should be treated as mineral

fertilizer; organic fertilizer (manure) has been reduced to ac-

count for limited plant availability and combined with data

on inorganic fertilizer applications.

3.4 Other data and parameter recommendations

In addition to management drivers, we harmonize historical

CO2 levels based on the Mauna Loa Observatory time series

(Thoning et al., 1989). We also provide instructions for how

to measure growing seasons, and provide guidance on pa-

5http://go.worldbank.org/IEH2RL06U0, last access: 1 Novem-

ber 2013

www.geosci-model-dev.net/8/261/2015/ Geosci. Model Dev., 8, 261–277, 2015

http://go.worldbank.org/IEH2RL06U0
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Figure 2. Area-weighted mean of annual precipitation [◦C] for

cropping areas for rain-fed wheat (a), rice (b), maize (c), and soy

(d).

rameter choices for automatic irrigation algorithms (where

applicable).

3.5 Data format conventions of input data

All input data are supplied in gridded format at 0.5◦× 0.5◦

spatial resolution in a compressed NetCDF4 file format.

Weather data are available at daily time steps and at 3-hourly

values for WFDEI (which is required for some participat-

ing land-surface models). Management data are available for

only one time period and are assumed to apply for all his-

toric time periods since data are lacking in changes in man-

agement over time (all comparisons are done between de-

trended observation and simulation time series, which greatly

reduces, but certainly does not eliminate the effect of changes

in management practices and technology over time).

4 Evaluation data sets and procedures

4.1 Historical yield data

We will use three yield data products at multiple scales to

evaluate our simulation outputs, Iizumi (Iizumi et al., 2014),

Ray (Ray et al., 2012), and FAOSTAT (FAOSTAT data,

2013). Iizumi (Fig. 4, left) provides a hybrid of national

statistics and satellite-derived normalized difference vegeta-

tion index (NDVI) at a nominal resolution of 1.125◦, cov-

ering maize, soy, wheat, and rice, and spanning 1982–2006.

Ray (Fig. 4, right) covers the same four crops using national,

Geosci. Model Dev., 8, 261–277, 2015 www.geosci-model-dev.net/8/261/2015/
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Table 11. Combination of crop calendar data in GGCMI data sets.

GGCMI crop MIRCA2000 SAGE LPJmL Days maturity to harvest

Barley Barley Barley spring+winter Wheat 7a

Cassava Cassava Cassava Cassava Assuming 0b

Groundnuts Groundnuts Groundnuts Groundnuts 0c

Maize Maize Maize Maize 1–28d, here 21

Millet Millet Millet Millet Assuming 0

Potatoes Potatoes Potatoes Sugar beets Assuming 0

Pulses (dry bean,

field peas)

Pulses Pulses Pulses Assuming 0

Rapeseed Rapeseed Rapeseed, winter Rapeseed Same as wheat = 7

Rice Rice Rice Rice 0e or 8–12f, herea

Rye Rye Rye, winter Wheat 7a

Sorghum Sorghum Sorghum Millet 0g

Soybeans Soybeans Soybeans Soybeans 7–21h here 21

Sugar beets Sugar beets Sugar beets Sugar beets Assuming 0

Sugarcane Sugarcane NA Sugarcane Assuming 0

Sunflower Sunflower Sunflower Sunflower 0i

Wheat Wheat Wheat, spring+winter Wheat 3j to 8k, here 7

a Assuming quick harvests for barley, rice, rye, and wheat as they are all threatened by pre-harvest sprouting (see, e.g.,

http://www.dpi.nsw.gov.au/data/assets/pdf_file/0010/445636/farrer_oration_1981_nf_derera.pdf) but allowing some time to dry after full maturity. b Can be

anything from 0 days to up to 6 months, harvest on demand.
c http://www.interaide.org/pratiques_old/pages/agro/3cultures/Phalombe_Mlwi_crop_management_2010.pdf, p. 8.
d http://www.smartgardener.com/plants/4159-corn-cherokee-white-flour/harvesting.
e http://agris.fao.org/agris-search/search/display.do?f=19902FPH3FPH90013.xml3BPH8811720.
f http://www.interaide.org/pratiques_old/pages/agro/3cultures/Phalombe_Mlwi_crop_management_2010.pdf, p. 13.
g http://www.interaide.org/pratiques_old/pages/agro/3cultures/Phalombe_Mlwi_crop_management_2010.pdf, p. 14.
h http://agris.fao.org/agris-search/search/display.do?f=20092FJP2FJP0932.xml3BJP2009005739.
i http://www.interaide.org/pratiques_old/pages/agro/3cultures/Phalombe_Mlwi_crop_management_2010.pdf, p. 12.
j http://agris.fao.org/agris-search/search/display.do?f=20092FJP2FJP0938.xml3BJP2009007527. k http://www.dwd.de/bvbw/appmanager/bvbw/

dwdwwwDesktop?_nfpb=true_windowLabel=T94008&_urlType=action&_pageLabel=dwdwww_klima_umwelt_phaenologie shows that there are 16 days

between “hard dough” stage (BBCH87) and harvest in Germany, and http://www.dwd.de/bvbw/generator/DWDWWW/Content/Landwirtschaft/Dokumentation/

AgroProg/Kornfeuchte,templateId=raw,property=publicationFile.pdf/Kornfeuchte.pdf shows that there are about 8 days between “hard dough” and “fully ripe”

(BBCH89) stages, so that the difference between “fully ripe” and harvest is 8 days as well.

sub-national, and sub-subnational statistics, spanning 1961–

2008, and provided at a nominal resolution of 5 arc minutes

by distributing yield statistics from administrative units to

grid cells evenly based on the approximate distribution of

crop areas in the unit, without any proxy measurements of

the relative distribution of attained yields. To fill in the gaps

for crops and years that are not available in these first two

data sets, we will compare aggregated simulation outputs at

the national level directly with statistics from FAOSTAT.

4.2 Open-source processing and evaluation pipeline

In order to ensure consistency and encourage consensus in

GGCMI products, we are developing all output processing

software utilities within an open software repository avail-

able at https://github.com/RDCEP/ggcmi/. Additionally, we

permanently archive the intermediate and final results of each

step in the output processing pipeline on the GGCMI data

servers. These data will be made available along with the data

supplied by GGCMI modeling groups at the time of pub-

lic release. The key stages of the pipeline are described in

Sects. 4.2.1–4.2.4.

Figure 3. N-equivalent application rate of nitrogen fertilizers for the

production of wheat.

4.2.1 Aggregation

All simulated data are first aggregated up to administra-

tive and environmental boundaries, including state/province

(GADM6 level 1), country (GADM level 0), river basins and

food producing units (FPUs; river basins crossed with coun-

6http://gadm.org/

www.geosci-model-dev.net/8/261/2015/ Geosci. Model Dev., 8, 261–277, 2015

http://www.dpi.nsw.gov.au/data/assets/pdf_file/0010/445636/farrer_oration_1981_nf_derera.pdf
http://www.interaide.org/pratiques_old/pages/agro/3cultures/Phalombe_Mlwi_crop_management_2010.pdf
http://www.smartgardener.com/plants/4159-corn-cherokee-white-flour/harvesting
http://agris.fao.org/agris-search/search/display.do?f=1990 2FPH 3FPH90013.xml3BPH8811720
http://www.interaide.org/pratiques_old/pages/agro/3cultures/Phalombe_Mlwi_crop_management_2010.pdf
http://www.interaide.org/pratiques_old/pages/agro/3cultures/Phalombe_Mlwi_crop_management_2010.pdf
http://agris.fao.org/agris-search/search/display.do?f=2009 2FJP 2FJP0932.xml 3BJP2009005739
http://www.interaide.org/pratiques_old/pages/agro/3cultures/Phalombe_Mlwi_crop_management_2010.pdf
http://agris.fao.org/agris-search/search/display.do?f=2009 2FJP 2FJP0938.xml3BJP2009007527
http://www.dwd.de/bvbw/appmanager/bvbw/dwdwwwDesktop?_nfpb=true_windowLabel=T94008&_urlType=action&_pageLabel=dwdwww_klima_umwelt_phaenologie
http://www.dwd.de/bvbw/appmanager/bvbw/dwdwwwDesktop?_nfpb=true_windowLabel=T94008&_urlType=action&_pageLabel=dwdwww_klima_umwelt_phaenologie
http://www.dwd.de/bvbw/generator/DWDWWW/Content/Landwirtschaft/Dokumentation/AgroProg/Kornfeuchte,templateId=raw,property=publicationFile.pdf/Kornfeuchte.pdf
http://www.dwd.de/bvbw/generator/DWDWWW/Content/Landwirtschaft/Dokumentation/AgroProg/Kornfeuchte,templateId=raw,property=publicationFile.pdf/Kornfeuchte.pdf
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A)     Wheat Yield – Iizumi et al. 2013 (t/ha) B)     Wheat Yield – Ray et al. 2012 (t/ha)

Figure 4. Example of historical evaluation data for year 2000 wheat yields from (a) Iizumi et al. (2013) (at 1.125◦ spatial resolution) and (b)

Ray et al. (2012) (aggregated from 5 arc minutes to 0.5◦).

Figure 5. Example of a global Köppen–Geiger climate classifica-

tion.

tries (Cai and Rosegrant, 2002)), Köppen–Geiger climate re-

gions (Peel et al., 2007) (example shown in Fig. 5), and large-

scale continental or sub-continental regions.

4.2.2 De-trending

In order to compare FAOSTAT observations with simulation

results, we must remove trends from the statistics. As there

are several methods to remove trends from observed data

and no one method works best in all situations, we employ

four distinct de-trending methods: we take (i) the linear or

(ii) quadratic trends from a least squares regression (Fig. 6,

right), (iii) we take a 7-year moving mean trend, and (iv) we

calculate the fraction first differences, Yt/Yt−1−1, of the se-

ries and remove a linear trend (Fig. 6, right). All conclusions

and results are then checked for robustness against all the de-

trending method used.

4.2.3 Multi-metric evaluation

GGCMI uses a varied approach to evaluate model outputs

over the evaluation period, comparing reference data and

simulations using a number of metrics and methodologies.

In preliminary analysis, metrics evaluated include the time

series correlation, root mean square error, ratio of simulated

and observed coefficients of variation, and the top and bot-

tom hit rates (number of years in the top and bottom quintile

of the observation series that are reproduced in the simulated

series). The metrics are formalized in the output processing

pipeline in a set of multi-dimensional metric files, which are

provided along with a plotting application that produces two-

dimensional cross sections by selecting, averaging, or opti-

mizing over any combination of dimensions (an example ar-

ray is shown in Fig. 7).

4.2.4 Multi-model ensembles

In the final processing step, we aim to produce multi-model

ensemble versions of the output to evaluate, for example,

how well the ensemble performs relative to individual mod-

els, highlighting individual model skill and deficiencies vs.

model community skills and deficiencies. This step uses the

multi-metric files to produce versions of the simulated vari-

ables that aggregate all of the models into various combina-

tions. Ensembles range in complexity from simple averages

(all models weighted equally) to weighted averages using

one or more evaluation metric, and from all models included

in the average to the inclusion of only the top-performing

model. Finally, we produce evaluation multi-metric files for

the ensemble combinations to easily facilitate comparison

of the ensemble measurements with individual models. This

will be the basis for identifying central processes in models

that are responsible for differences in model performance as

well as general model deficiencies that require improvements

in all models and in understanding. This phase will likely re-

quire additional simulations with modified models.

5 GGCMI data archive and crediting

GGCMI computing and data services are housed at the Uni-

versity of Chicago Research Computing Center (RCC) and

the German Climate Computing Center (DKRZ). GGCMI

will host an archive of all project inputs and outputs and will

work continuously with research and stakeholder communi-

Geosci. Model Dev., 8, 261–277, 2015 www.geosci-model-dev.net/8/261/2015/
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Figure 6. (a) FAOSTAT yield for maize in Argentina (solid line and points) with the linear (blue) and quadratic (red) best-fits and 7-year

moving average (gray). (b) Fractional first difference of maize yields in Argentina (gray), the linear trend (blue line) and the fractional first

difference with the trend removed (red).

A B

Figure 7. Examples of cross sections of the multi-metric evaluation array for the top two maize-producing countries – the United States (a)

and China (b). Plot shows time series correlations for eight different crop models run (x axis) with nine different climate forcing data sets

(y axis). For each model/climate combination, the best metric value among the scenarios (default, fullharm, and harmnon) and de-trending

methods (linear, quadratic, moving mean, and trend-removed fraction first difference) are shown.

ties, for example, through engagement processes established

as part of frequent regional and global workshops hosted by

AgMIP, to improve archive access and usability. During each

phase of the project (i.e., before the public launch of the re-

sulting archive), all inputs and outputs generated belong to

the GGCMI as a team (i.e., all GGCMI modelers) and must

not be used, distributed, presented, or published in any indi-

vidual or selected study without the consent of the group of

contributing GGCMI modelers. During this time, presenta-

tions and publications will be led by GGCMI team members

and will be coordinated through the GGCMI coordinators.

The publications must acknowledge each individual contri-

bution, including providers of not publicly available input or

reference data, via co-authorship or other agreed acknowl-

edgement.

Because GGCMI acts as the sectoral coordinator for

crop modeling in Phase 2 of the ISI-MIP project (ISI-

MIP2), we have designed the GGCMI protocols to overlap

with (planned) ISI-MIP2 simulations as closely as possible.

Upon the data submission deadline as defined by ISI-MIP2,

GGCMI data will automatically be transferred to ISI-MIP2,

unless otherwise specified by participating modelers. At this

time, GGCMI modelers become ISI-MIP2 participants and

additional restrictions or specifications for data availability,

as negotiated between ISI-MIP2 and GGCMI coordinators

and modelers, may apply at this time.

6 Discussion

The core outcome of GGCMI is the creation and mainte-

nance of an international community of modelers focusing on

climate impacts and relationships to food security, resources,

economics, land-use change, and climate feedbacks at conti-

nental and global scales. As has been amply demonstrated in

processes like the Coupled Model Intercomparison Project

(CMIP) (Taylor et al., 2012), the Energy Modeling Forum

(Weyant et al., 2006), AgMIP projects such as the wheat

pilot (Asseng et al., 2013), and the ISI-MIP Fast Track re-

cently completed (Warszawski et al., 2014; Rosenzweig et

www.geosci-model-dev.net/8/261/2015/ Geosci. Model Dev., 8, 261–277, 2015
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al., 2014; Elliott et al., 2014a; Nelson et al., 2014), the bring-

ing together of modelers working independently on com-

plex dynamic phenomena to compare and synthesize out-

puts can generate substantive insights and innovations that

are not generally possible otherwise. A key observation from

the AgMIP/ISI-MIP Fast Track and other recent model inter-

comparisons (Rosenzweig et al., 2014; Nelson et al., 2014;

Challinor et al., 2014), and a key motivation for GGCMI, is

the importance of harmonization of input data and assump-

tions.

Each phase of GGCMI will include planning, simula-

tion, analysis, and publication components that will build

on the inputs, science, and deliverables of the previous

phase. In Phase 2, GGCMI participants will conduct a multi-

dimensional sensitivity study of model response to carbon

dioxide, temperature, water, and nitrogen (CTWN) organized

around a set of simulations driven by perturbed versions

of the historical and harmonized data products prepared in

Phase 1. Results will be used both to analyze model sensi-

tivity and to develop high-resolution multi-dimensional re-

sponse surfaces that can be aggregated into arbitrary ad-

ministrative or environmental boundaries and will be tested

for suitability as efficient multi-model emulators. In Phase

3, GGCMI participants will conduct a comprehensive as-

sessment of climate vulnerabilities, impacts, and adaptations

using a new set of future climate forcings from CMIP5

and Coordinated Regional Climate Downscaling Experiment

(CORDEX) and a detailed set of adaptation scenarios de-

veloped in the AgMIP Representative Agricultural Path-

ways (RAPs) framework. GGCMI also builds on other exist-

ing AgMIP projects, such as the Coordinated Climate-Crop

Modeling Project (Ruane et al., 2014), and cross-cutting

themes such as uncertainty and spatial scaling/aggregation.

During GGCMI’s 3-year duration, our aim is for the com-

munity to create a new standard for research on global

change vulnerabilities, impacts, and potential adaptations.

Data products, analyses and insights are to be published in

peer-reviewed scientific journals and will thus be accessible

to the scientific community. Due to the open and accessi-

ble structure of the project and its data distribution archi-

tecture, we expect important scientific outcomes and deliv-

erables to evolve and develop during and well beyond the

planned project lifetime. GGCMI leverages and relies on the

contributions of many partners that typically lack funding for

this project. However, the tremendous enthusiasm that this

project has generated among participants and user communi-

ties makes us confident that GGCMI will succeed in accom-

plishing its stated goals – and, with high likelihood, greatly

surpass those goals. In addition, close partnership with the

AgMIP and ISI-MIP networks and the active participation of

leaders from those groups, will help ensure that GGCMI is

highly visible within and beyond the scientific community.

The GGCMI team will also work with potential end users to

facilitate usage of GGCMI results downstream in economic

models and globally and regionally integrated assessments.

For this purpose we are developing several use cases for the

existing Fast Track archive (Nelson et al., 2014) and work-

ing with economic modeling communities such as the En-

ergy Modeling Forum (EMF) and the Global Trade Analysis

Project (GTAP)7 and actively seek funding for GGCMI ac-

tivities and cooperation with other groups.

The standardized, protocol-based model intercomparison

described here will be the basis for a clear analysis of model

skills and deficiencies, identification and reduction of crop

model uncertainties, and identification of future development

paths to improve models and assessments. Clearly, more

work than is envisioned here is needed in analyzing and im-

proving crop modeling skills for gridded large-scale appli-

cations. Still, the first phase of GGCMI will provide a solid

basis for future work by providing not only standardized in-

puts and reference data but also open-access data processing

and analysis tools. During this first part of the project, by

identifying the main sources of uncertainty and model dis-

agreement, we expect that key conditions for the next phase

of analysis will take shape. We hope to support all large-scale

crop modeling efforts with the insights and analysis tools that

are produced in GGCMI, and we invite all agricultural scien-

tists to contribute to the development and framing of the next

phases of the project and protocols.
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