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a b s t r a c t

A method is described for the generation of climate scenarios in a form suitable for driving agricultural
models. The scenarios are tailored to the region in southeastern South America bounded by 25–40◦

S, 45–65◦ W, denoted here as SESA. SESA has been characterized by increasing summer precipitation,
particularly during the late 20th century, which, in the context of favorable market conditions, has enabled
increases in agricultural production. Since about year 2000, however, the upward tendency appears to
have slowed or possibly stopped, raising questions about future climate inputs to regional agricultural
yields.

The method is not predictive in the deterministic sense, but rather attempts to characterize uncertainty
in near-term future climate, taking into account both forced trends and unforced, natural climate fluctua-
tions. It differs from typical downscaling methods in that GCM information is utilized only at the regional
scale, subregional variability being modeled based on the observational record. Output, generated on the
monthly time scale, is disaggregated to daily values with a weather generator and used to drive soybean
yields in the crop model DSSAT-CSM, for which preliminary results are discussed. The simulations pro-
duced permit assessment of the interplay between long-range trends and near-term climate variability
in terms of agricultural production.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

During the 20th century, particularly its latter half, southeast-
ern South America (SESA) experienced an upward trend in summer
rainfall (Gonzalez et al., 2013; Liebmann et al., 2004). Together
with favorable market conditions, and in the context of techno-
logical advances, this upward tendency has enabled increases in
agricultural yields (Magrin et al., 2005; Viglizzo and Frank, 2006).
Since about year 2000, however, the upward tendency in rainfall
has slowed, or possibly reversed. Neither the steady upward trend
nor its recent slowing is well-simulated by global climate mod-
els (Gonzalez et al., 2014), leaving its cause and future evolution
in question. The recent decadal hindcast experiments conducted
as part of the Coupled Model Intercomparison Project, phase 5
(CMIP5) do not indicate significant decadal prediction skill for SESA
for either temperature or precipitation, based on initializing the
models with the observed ocean state (Goddard et al., 2013). This
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leaves an unfilled need for useful climate information for the next
few decades, in particular for the purposes of assessing the climatic
contribution to potential fluctuations in agricultural yields.

We present here a methodology, not for predicting the future
of SESA hydroclimate in a deterministic sense, but rather, for the
characterization of future regional climate uncertainty over the
next few decades. The method represents an extension of that
described in earlier work in the Western Cape Province of South
Africa (Greene et al., 2012, hereinafter referred to as G12), and
accounts for uncertainties in both the response to anthropogenic
forcing and in natural, unforced climate variability. A key ques-
tion in the forcing of SESA hydroclimate concerns the influence of
stratospheric ozone (e.g., Gonzalez et al., 2014); a simple method
for representing the associated uncertainty is implemented. Pos-
sible cross-scale interaction is incorporated into the simulation
framework as necessary. The final output is downscaled using a
modification of the k-nearest-neighbor (k-NN) resampling method,
applied to observational data that may have either monthly or
daily time resolution. The core statistical model represents spa-
tial covariability as well as serial autocorrelation in individual
variables.

http://dx.doi.org/10.1016/j.agrformet.2015.01.008
0168-1923/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Trends for precipitation and maximum and minimum daily temperatures for 1901–2011, aggregated to the seasonal (SONDJF) level. Note the reversal of colors
between the precipitation and temperature scales.

The data utilized are described in Section 2 and the method in
Section 3. Validation of various climate diagnostics is covered in
Section 4. The downscaling component is described in Section 5 and
preliminary application using an agricultural model in Section 6.
A discussion and conclusions are presented in Sections 7 and 8,
respectively.

2. Data

We employ both observational data and climate model simula-
tions. When downscaling directly to the daily time step, a hybrid
product based on in situ observations, satellite data and reanalysis
is employed. These data types are described in turn.

2.1. Observations

The basic observational dataset employed is the TS3.21 prod-
uct of the Climatic Research Unit, University of East Anglia (Harris
et al., 2013), which is gridded at 0.5◦ and has monthly time reso-
lution. The dataset is complete, but includes values that may have
been filled, either by interpolation from nearby stations or with
climatological values. The northerly extent of the study domain
was limited by the presence of filled values between 20◦ S and
25◦ S. The TS3.21 data extend from 1901 through the end of 2012;
since we model here a growing season (SONDJF) that crosses the
year boundary, we limit the nominal range to 1901–2011, per-
mitting the use of 111 full six-month seasons in modeling and
resampling.

The study domain appears as a box in each panel of Fig. 1, which
shows 1901–2011 linear trend coefficients for SONDJF for the three
variables modeled: precipitation and maximum and minimum
daily temperatures (Tmax and Tmin, respectively). The increasing
tendency of precipitation in the SESA box can clearly be seen, as can
the general increase in both of the temperature variables. The Tmax
plot shows an area in the southwest of the SESA box with weakly
negative coefficients, even as the rest of the box has warmed. Post-
1971, however, a period of increasing global temperatures, Tmax
has increased more uniformly within the box. It is of interest that
Tmin increases more rapidly with time, even for trends beginning
in 1901, implying a decrease in the diurnal temperature range.
Future trends are modeled separately for the two temperature
variables.

For precipitation, comparison was made with version 6 of the
Global Precipitation Climatology Center (GPCC Schneider et al.,
2011). The regional SONDJF means (3.41 mm d−1 and 3.58 mm d−1)
and standard deviations (1.34 mm d−1 and 1.47 mm d−1 for CRU
and GPCC, respectively) agree fairly well, as do the regional
mean 20th-century trends (0.085 and 0.086 mm d−1 decade−1,
respectively). Trend patterns within the SESA are also reasonably
well-correlated (r = 0.67). Since the CRU dataset comprises similarly
computed and gridded values for Tmax and Tmin, and since these

variables are modeled jointly with precipitation, it was decided to
utilize CRU for the work presented herein.

2.2. Climate model simulations

In G12, future regional precipitation trajectories were selected
by quantile from a distribution over a set of CMIP5 climate models.
For reasons to be discussed we do not utilize this procedure here.
However a CMIP5 ensemble is utilized to estimate the global and
regional responses to external forcing, to investigate covariation
between future regional trends in precipitation and temperature
and for comparison with projected temperature trends. The models
utilized are listed in Table 1.

Questions have arisen regarding model interdependence (Knutti
et al., 2013). Only minor differences were noted here when distri-
butions were computed after first averaging over models within a
family. The full multimodel set (one ensemble member per model)
was therefore utilized.

2.3. Satellite data and reanalyses

In the present report we describe downscaling to the monthly
time step; the possibility also exists of generating daily output, by
resampling from a dataset such as AgMERRA, a product based on the
MERRA reanalysis (Rienecker et al., 2011) developed for crop mod-
eling as part of the international AgMIP project (http://agmip.org).
This is discussed in Section 5.

2.4. Stratospheric ozone

Because stratospheric ozone may affect SESA precipitation we
model a partial dependence. Both past and projected concentration
data, as compiled by the Stratosphere–troposphere Processes And
their Role in Climate (SPARC) activity of the World Climate Research
Program (Cionni et al., 2011), are utilized. This dataset serves as a
boundary forcing for the majority of CMIP5 models, which do not
compute stratospheric ozone interactively.

3. Method

The procedure developed herein advances the work described in
G12, in part by adding refinements but also though the representa-
tion of within-region variability in terms of principal components.
This enables the consideration of larger, more climatically com-
plex regions than could easily be accommodated using the earlier
method. In common with G12, climate variability is decomposed
into long-range trend, annual-to-decadal variability and suban-
nual variations. The first two of these are modeled independently
and the results combined, producing annually-resolved seasonal
simulations over the entire gridded domain. These simulations are
then downscaled in time, using a k-NN variant. In South Africa the

http://agmip.org
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Table 1
Climate modeling centers and models.

Center Country Model ID

Commonwealth Scientific and Industrial Research Organization (CSIRO) and Bureau of Meteorology (BOM) Australia ACCESS1-0
– Australia ACCESS1-3
Beijing Climate Center (BCC), China Meteorological Administration China BCC-CMS1.1
– China BCC-CMS1.1(m)
College of Global Change and Earth System Science (GCESS), Beijing Normal University China BNU-ESM
Canadian Centre for Climate Modelling and Analysis (CCCMA) Canada CanESM2
National Center for Atmospheric Research (NCAR) USA CCSM4
Community Earth System Model Contributors (NSF-DOE-NCAR) USA CESM1-BGC
– USA CESM1-CAM5
Centro Euro-Mediterraneo per I Cambiamenti Climatici (CMCC) Italy CMCC-CESM
– Italy CMCC-CM
– Italy CMCC-CM5
Centre National de Recherches Météorologiques/Centre Européen de Recherche et Formation Avancée en Calcul Scientifique

(CNRM-CERFACS)
France CNRM-CM5

Commonwealth Scientific and Industrial Research Organization in collaboration with Queensland Climate Change Centre of
Excellence (CSIRO-QCCCE)

Australia CSIRO-Mk3.6.0

LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences and CESS, Tsinghua University (LASG-CESS) China FGOALS-g2
The First Institute of Oceanography, SOA, China (FIO) China FIO-ESM
NOAA Geophysical Fluid Dynamics Laboratory (NOAA GFDL) USA GFDL-CM3
– USA GFDL-ESM2G
– USA GFDL-ESM2M
NASA Goddard Institute for Space Studies (NASA GISS) USA GISS-E2-H
– USA GISS-E2-R
Met Office Hadley Centre (MOHC) UK HadGEM2-CC
Met Office Hadley Centre (additional HadGEM2-ES realizations contributed by Instituto Nacional de Pesquisas Espaciais, INPE) UK HadGEM2-ES
Institute for Numerical Mathematics (INM) Russia INM-CM4
Institut Pierre-Simon Laplace (IPSL) France IPSL-CM5A-LR
– France IPSL-CM5A-MR
– France IPSL-CM5B-LR
Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan

Agency for Marine-Earth Science and Technology (MIROC)
Japan MIROC5

Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute (The University of Tokyo),
and National Institute for Environmental Studies (MIROC)

Japan MIROC-ESM

– Japan MIROC-ESM-CHEM
Max-Planck-Institut für Meteorologie (Max Planck Institute for Meteorology, MPI-M) Germany MPI-ESM-LR
Meteorological Research Institute (MRI) Japan MRI-CGCM3
Norwegian Climate Centre (NCC) Norway NorESM1-M
– Norway NorESM1-ME

model was fit to annual mean values of precipitation and maximum
and minimum daily temperatures. Here we model the principal
growing season, which we take as September–February (SONDJF).
Out-of-season months are represented by climatological values,
which for temperature are superimposed on a slowly-evolving
trend bearing a fixed offset to the SONDJF trend.

A method flow chart appears as Fig. 2 in G12, regarding which
there are two notable differences with the current implementation:
The first involves the manner of projecting future trends, which
here involves a balance of stratospheric ozone and global warming
influences. The second concerns the representation of grid-scale
variability in terms of principal components; in G12 regional means
of the three principal variables were modeled directly. Further
descriptive material may be found in that reference.

The technique inherits from the so-called “delta” method (Hay
et al., 2000; Beldring et al., 2008), in which observed data sequences
are superimposed on projected changes. Whereas the classical delta
method is limited to the repetition of observed sequences, however,
here the annual-to-decadal component is simulated, providing an
essentially infinite variety of possible realizations. In the k-NN
downscaling step, values are resampled from the observational
record, so subannual sequences within individual years are drawn
from those that have been observed. However, subannual values
are also rescaled, additively for temperature, multiplicatively for
precipitation, so as to bring seasonal means into agreement with
the simulated values.

One other feature that differentiates the current scheme from
other downscaling methods is the restriction of GCM information
to regionally-averaged values. We are guided in this choice by the

observation that GCMs are most reliable on continental to subcon-
tinental scales (Masson and Knutti, 2011).

3.1. Detrending the observational record

The purpose of characterizing historical trends is to remove
them, the residual variations then being passed to the annual-
to-decadal modeling routine. Ideally, the abstracted trends would

Linear
MMM

Linear
MMM

Fig. 2. (a) Two detrending methods applied to regional mean precipitation and (b)
residuals from those methods. The latter are taken to represent natural annual-to-
decadal variability.



220 A.M. Greene et al. / Agricultural and Forest Meteorology 203 (2015) 217–228

represent the response to anthropogenic forcing, so that the differ-
ing model levels would apply not to differing time scales per se, but
to variations mediated by different kinds of process. The simulated
annual-to-decadal values would then maintain the characteristics
of observed unforced variability, rather than some unknown mix-
ture of the forced and the natural. Offline tests, conducted in the
domain of GCMs, may then be used to infer potential cross-scale
interaction (i.e., forced changes in the characteristics of “natural”
variability), for incorporation in the simulation model.

To accomplish this separation we detrend by regressing the
observed data, at the grid level and separately for each variable,
on a global mean, multimodel mean (MMM) temperature record.
In principle this procedure extracts that part of local variability that
is linearly dependent on the primary index of anthropogenically-
forced climate change (Greene et al., 2011). Analysis suggests that
contributions from solar and volcanic forcings are relatively small
by comparison and of opposite sign (Hegerl et al., 2003). The MMM
signal is used in order to reduce the possible confounding effect of
natural decadal variations: Among the different models such vari-
ations are incoherent and tend to cancel, leaving a common signal
– the forced response to the imposed boundary conditions that the
models share. Although stratospheric ozone may also play a role in
modulating SESA precipitation, the ozone and temperature signals
during the 20th century are essentially collinear to within sign, so
nothing is gained by inclusion of the former.

The MMM signal is concave up, increasing more rapidly toward
the end of the record, and will provide a better fit to predictands
that behave in like manner, particularly temperature. Since precip-
itation trends tend to be small when compared with year-to-year
variations, differences resulting from the two detrending meth-
ods will also tend to be small, and because we consider the MMM
method preferable from the conceptual standpoint we employ it
here. The difference in fitted trend and residual signal is illustrated
in Fig. 2, the two methods being applied here to the SESA regional
mean precipitation record. Conceptually, the residual from MMM
detrending represents natural, or unforced variability; it is this sig-
nal, for all three variables (at the gridbox level and following data
reduction via PCA) that is passed to the statistical model for annual-
to-decadal variations.

3.2. Interannual-to-decadal variability

The resultant of the detrending step is seasonally-resolved data,
i.e., having one value per year representing the SONDJF mean, at
each gridbox for each of the primary variables. These data, which
now have zero time means, represent the natural component of cli-
mate variability. After data reduction, a subset of leading principal
components is fit with a statistical model, which is then used to gen-
erate a long stream of simulated data. After back-conversion into
the primary climate fields, a selected slice of this data is then post-
processed to yield the annual-to-decadal variability component of
the simulation.

3.2.1. Data reduction in terms of PCA
The SESA domain has an area of about 4.2 × 106 km2 and, at a

resolution of 0.5◦, comprises 734 land grid boxes, giving it an areal
extent more than an order of magnitude greater than that con-
sidered in G12. In that work it was shown that annual-to-decadal
variability was rather homogeneous across the domain. Modeling
was performed directly on the regionally-averaged primary vari-
ables and simulated sequences broadcast to localities via linear
regression. Here, by contrast, we prefilter the data in terms of
empirical orthogonal functions (EOFs), retaining a subset of the
leading patterns. The principal component time series (PCs) for
these patterns are then modeled and simulated. No broadcasting

step is then necessary, since the simulated PCs can be immediately
transformed back into seasonal variations over the entire domain.

Fig. 3 shows the first five multivariable EOFs, along with the cor-
responding PC time series. These are obtained by first standardizing
the three variables, then combining them into a single large data
matrix on which the EOF analysis is performed, here using singular
value decomposition. The EOFs are scaled so as to be orthonormal,
the squared singular values then representing the PC variances.
These five EOFs explain 25.6%, 22.3%, 7.3%, 7.2% and 5.1% of the
variance, respectively, in the multivariate data.

Fig. 3 indicates that precipitation and temperature tend to vary
inversely, with the relationship somewhat more consistent for
Tmax than Tmin. This may be because the cloudiness associated
with precipitation is more effective in reducing surface incoming
shortwave radiation during the day than are nocturnal clouds in
reducing outgoing longwave radiation. A moist surface also par-
titions surface fluxes in favor of latent, rather than sensible heat.
Inverse patterns of precipitation and Tmax are clearly visible in all
of the EOFs. Tmax and Tmin can also be seen to covary in the positive
sense, Tmax thus coupling more strongly with both precipitation
and Tmin than those variables with each other. Validation exercises
(see Section 4) indicate that in order to preserve grid-level statistics
a larger number of EOFs must be retained than might be the case for
classical diagnostic studies. Based on those exercises it was decided
to retain the 20 leading modes for these simulations.

3.2.2. Vector autoregressive (VAR) model
As in G12 we utilize a first-order vector autoregressive (VAR)

model for annual-to-decadal variations, but here fit to the retained
PCs. Global wavelet spectra of the observational time series do not
differ significantly (at ˛ = 0.1) from red noise, while information
tests offer no justification for the use of higher-order models.

The VAR(1) model can be written

Yt = AYt-1 + �t, (1)

where Yt is the N-component PC vector at time (i.e., year) t, Yt−1
its lagged value one year previous and �t a random, vector noise
process that is uncorrelated in time but may be correlated across
PCs. Note that while the PCs themselves are uncorrelated by con-
struction, this need not be the case for the terms on the rhs of (1)
considered separately. The N × N matrix A holds the coefficients
relating Yt to its predecessor one time step previous, its N2 ele-
ments characterizing lag-1 relationships between the N2 possible
pairwise combinations of PCs, thus including serial autocorrelation
as well as lag-1 cross-correlations.

The model is fit using the Dynamical Systems Estimation (dse)
package (Gilbert, 1995) in the “R” programming language (Ihaka
and Gentleman, 1996), then utilized to generate a single, long
(12 kyr) simulation sequence, which is then transformed back into
the primary variable space, with the standardization and area-
weighting removed. In a postprocessing step this long series is
screened, then sliced, in order to provide an example sequence of
annual-to-decadal variability having specified deviations during a
particular future decade. Superimposing this data slice on the pro-
jected trends provides a way to assess relative contributions from
forced and natural variations during that decade.

3.3. Specification of future trends

For the past, detrending is important inasmuch as it deter-
mines the residual data passed to the annual-to-decadal modeling
stage and thus the character of future variability. The specifica-
tion of future trends, on the other hand, concerns the delineation
of uncertainty, based on our current understanding of potentially
compensating driving factors in SESA.
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Fig. 3. The first five EOFs and corresponding PCs (rows 1–5) in a decomposition of the detrended 1901–2011 seasonal climate record for SESA. Since the plots in each row
represent the same EOF pattern, colors have been kept consistent across the precipitation and temperature variables.

3.3.1. Role of stratospheric ozone
In the multimodel mean, GCMs of the CMIP5 family under-

estimate the observed upward tendency in 20th-century SESA
precipitation by a factor of more than five (Seager et al., 2010;
Gonzalez et al., 2014); it would therefore seem unwise to depend
on those models for quantitative estimates of future long-range
trends. Additionally, the late 20th-century depletion of strato-
spheric ozone has been implicated as a possible driver of the
increase in SESA summer rainfall, owing to its cooling effect on
the lower stratosphere and the consequent spinup of the Antarctic
polar vortex (Kang et al., 2011; Gonzalez et al., 2014). Inade-
quate GCM representation of processes governing the evolution of
stratospheric ozone and/or its consequent radiative and dynamical
effects may contribute to the difficulty in simulating SESA precipi-
tation trends.

3.3.2. A balance of two influences
For the above reasons the GCMs are utilized only indirectly

in specifying a future long-range precipitation trend. Rather, it is
assumed that there are two dominant influences on the future
tendency, namely, changes in stratospheric ozone and warm-
ing of the planet owing to increasing atmospheric greenhouse
gas (GHG) concentrations, whose relative importance in driving
future precipitation changes is unknown. These driving factors are
used as predictors, using SPARC ozone data and simulated MMM
global mean temperature records from the GCMs, respectively.
For the former, we take the zonal mean ozone concentration for
Sep–Nov (SON), averaged over 70–90◦ S and integrated from 100
to 300 mb. SON represents Southern Hemisphere spring, the time of
year when a combination of still-cold stratospheric temperatures
and increasing shortwave radiation facilitate ozone destruction

Fig. 4. (a) South Polar stratospheric ozone, from the SPARC database, and a multimodel mean temperature record. Both series have been standardized. (b) Regression of the
regional SONDJF precipitation record on each of the signals shown in panel (a), along with weighted projections. See text for details.
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(Solomon, 1999), leading to the development of the well-known
“ozone hole.” For the temperature predictor, which to first order
represents the planetary response to GHG forcing, we construct
a multimodel-mean, global mean signal, as described in G12. The
multimodel mean signal is also smoothed using a lowpass Butter-
worth filter having a half-power point at a frequency of 0.1 yr−1.
The two predictors, standardized for comparison, are shown in
Fig. 4a.

Owing to the lack of small-scale features in these signals, as
well as their similar (if inverted) shapes during the 20th century,
they cannot be combined as predictors in a multivariate regression.
Rather, they are treated separately and the results then combined.
Fig. 4b shows fitted trendlines from individual univariate regres-
sions on the two predictors, as well as future projections based on
the respective inferred sensitivities. For the latter, several variants
are illustrated, based on weighting the individual trends toward
one predictand or the other. If the ozone record is used alone, the
future trend labeled “Pure O3” is obtained, and similarly for the
MMM temperature signal (“Pure Tmmm”). The other trend pro-
jections show weights for Tmmm and ozone of (0.1, 0.9), (0.9, 0.1)
and (0.5, 0.5), for “O3-dominated”, “Tmmm-dominated” and “Mean
trend”, respectively. The true balance between these two factors in
controlling the future evolution of SESA precipitation is unknown;
the range of possibilities spanned by the alternatives shown mir-
rors this uncertainty. In the generation of simulations we sample
from the distribution represented by this spread, at the values rep-
resented in Fig. 4b by dashed lines.

3.3.3. Prediction error
In addition to the uncertainty in the forced response represented

by the spread in future trends shown in Fig. 4b there will be predic-
tion error associated with uncertainty in the estimated regression
coefficients. Tests suggest that this uncertainty is not negligible,
but is relatively small compared with the basic trend uncertainty
represented in the figure. Limitation in forward projection to just
a few decades implies that projected trends will not extend far
outside the dynamic range of the observations used to estimate
them.

3.3.4. Out-of-season values
The trends shown in Fig. 4 are applied, as noted, to SONDJF

means. We model seasonal, rather than annual mean values in
order to increase the signal-to-noise ratio in the training data, and
because the growing season is of primary importance for agricul-
tural applications. Because crop models may be run sequentially
over a span of years, or initialized prior to the start of the growing
season, however, we also provide for those months that fall outside
the nominal growing period. This is done by first computing a cli-
matology for the months in question, for each of the three model
variables. For precipitation this climatology is utilized directly to
represent out-of-season values; for temperature, the centered cli-
matology pattern is superimposed on a trend that is offset from
the growing-season trend by the mean observed temperature dif-
ference between the two seasons. This is done at each gridpoint,
and insures, as climate warms, against increasingly large discon-
tinuities between the growing season and what otherwise would
be static climatological temperatures for the rest of the year. Out-
of-season precipitation has not been observed to trend during the
observational period, and would not be expected to respond to
ozone variations, which are marked by a distinct seasonal finger-
print (Son et al., 2009).

3.3.5. Fractional precipitation treatment
It proves advantageous to represent precipitation in terms of its

logarithm, so that future changes can be expressed in fractional,
rather than absolute terms. The future trend is computed at the

regional scale, as per the balance described in Section 3.3.1, and is
taken as a best estimate for all gridpoints. A modeling option is
provided to add a local perturbation, based on grid-level 20th-
century behavior, to the regional mean value. Invoking this option
would induce some scatter into the gridbox-level trends, providing
more realistic simulation results in the case where modeled agri-
cultural yields are aggregated over a subregion of significant areal
extent.

3.3.6. Temperature trends
Tmax and Tmin are treated as separate (not necessarily indepen-

dent) variables, with respect to both trends and annual-to-decadal
variations. Both are detrended at the grid level, by regression on
the same MMM signal utilized as a predictor in the treatment of
precipitation. The resulting coefficients, which are then utilized to
project temperatures forward, represent ratios of local to global
temperature change. For the region as a whole the coefficients
for Tmax and Tmin are 0.61 and 1.13, respectively, indicating that
during the 20th century Tmin has increased twice as rapidly as
Tmax, relative to global mean temperature. As with precipitation,
the initially-specified future temperature trends are everywhere
uniform, with the option to add a local perturbation based on grid-
level 20th-century behavior. This allows some variation from grid
to grid while controlling the overall dispersion of trends, mimick-
ing the natural smoothing of horizontal temperature gradients by
local circulations.

It may be asked why the regional MMM temperature trend is
not simply utilized directly, rather than projecting a regional trend
based on the observed dependence on global mean temperature.
Fig. 5 compares the two methods, as applied to the mean temper-
ature. The future MMM temperature is seen to follow a trajectory
that is quite similar to (if slightly more linear than) that of the trend
projected using the 20th-century regression. However the former
exhibits an additive bias with respect to the observed, of about 0.9◦

C. After removing this bias the future trend would be quite similar
for both methods.

Another question that might be posed regards possible covari-
ation of future precipitation and temperature trends. We include
provision for this in the general model, but in SESA, other than for
a small group of relative outliers (six out of the 34 models polled),
there is no significant relationship between future regional trends
in temperature and precipitation (not shown). We therefore do not
adjust future temperature trends based on the specified balance
between ozone and temperature influences.

3.4. Cross-scale coupling

It has been hypothesized that precipitation variability will
increase with global temperatures, owing to the increase in water
saturation vapor pressure with temperature (see, e.g., FAQ 3.2,
p. 262 in Solomon et al., 2007). This is tested for the interannual
time scale in Fig. 6. Fig. 6a shows a histogram of the ratio of inter-
annual precipitation variance for 2040–2059 to that of 2006–2025,
the distribution being across the CMIP5 ensemble enumerated
in Table 1. The distribution is skewed, with a small number of
models showing a substantial increase but most of the popula-
tion nearer the low end of the scale. The median variance ratio is
1.04. In Fig. 6b the values from panel (a) are plotted against each
model’s global mean temperature change between the same two
periods, to test whether models that warm more exhibit greater
variance increases. The evidence here is also inconclusive, with
linear regression yielding a positive, but not statistically signif-
icant slope. In the simulation model, interannual variability can
be scaled by global mean temperature change, but in view of
these results it was decided not to implement this procedure for
SESA.
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Fig. 5. Regional mean temperature, projected forward by regression on the MMM temperature record and in the CMIP5 multimodel ensemble mean. The observed SESA
record from 2001–2011 is also shown.

3.5. Assembling the seasonally-resolved signal

Future trends, developed as in Section 3.3 and gridbox-
level variability on the annual-to-decadal level, simulated as
described in Section 3.2, are now combined. The regional pre-
cipitation trend is computed based on the specified balance
factor f, while the annual-to-decadal component is sliced from
the very long simulation sequence generated by the VAR
model.

The long sequence consists effectively of many realizations of
decadal-length climate variability, from which we may choose
according to any criteria of interest. Because we are interested
in the decadal scale, we screen the long sequence for decades in
which regional mean precipitation lies at or near a defined per-
centile. To efficiently explore the range of decadal uncertainty we
choose three levels, namely the 5th, 50th and 95th percentiles. We
combine these with three levels for the precipitation trend bal-
ance factor f: 0.1 (ozone-dominated), 0.5 (equal ozone and warming
effects) and 0.9 (GHG-dominated) spanning the trend uncertainty

range. Combining each trend variant with the three decadal fluc-
tuation percentiles yields a basic simulation ensemble having nine
members.

On the annual-to-decadal scale, the three fields exhibit large-
spatial-scale covariance (Section 3.2.1). In screening the long
simulation sequence for a dry decade, for example, the expecta-
tion would be that mean temperatures for that decade would be
above normal. However for a given realization the temperature
variable could fall anywhere within its conditional range. A sec-
ondary level of screening is thus conducted in order to insure that
Tmax and Tmin lie reasonably close (±0.5�) to their conditional
means, given the specified precipitation level, in effect selecting
for subsequences that are “jointly typical,” in the information-
theoretic sense (Cover and Thomas, 2006). A fourth screening
requires the precipitation deviation for the previous decade to be
<1�, so as to minimize potential initial-state bias. Specification of
these criteria is up to the investigator; the primary screening could
be for a specified fluctuation in temperature rather than precipita-
tion, for example.

Fig. 6. (a) Histogram of the ratio of interannual SESA precipitation variance for 2080–2099 to that of 2006–2025. Distribution is over the models listed in Table 1, for the
RCP8.5 scenario. (b) The values in panel (a) plotted against global temperature change between the same two periods. Dashed line in (b) is plotted at y = 1.
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Fig. 7. Simulation examples, showing regional mean, seasonal (SONDJF) mean time series of the principal variables. Decadal precipitation fluctuations at the fifth percentile
occur at years 2031–2040, demarcated by short vertical bars in the topmost plots. Dashed lines represent trends.

Fig. 7 provides two examples of final simulation sequences, pre-
sented as regional mean, seasonal mean time series. In Fig. 7a the
balance factor f has been specified so as to allow the influence
of ozone recovery to dominate; consequently, future precipitation
undergoes a gradual decline. In Fig. 7b the factor f is set at 0.5, so
ozone and GHG influences are nominally equal. As in Fig. 4b this
produces a positive future precipitation trend, albeit weaker than
that characterizing the late 20th century. A more sharply increasing
trend results if f is specified so that GHG forcing dominates.

On each of the trends shown in Fig. 7 has been superimposed
a sequence from the long simulation, screened for decadal-mean
precipitation fluctuations lying near the fifth percentile; the long
simulation has been sliced so that these fluctuations occur during
the 2031–2040 decade. Inspection of the figure reveals differences
in detail within this decade, to which agricultural or economic out-
comes might possibly prove sensitive. In such a case it may be
sensible to focus on a single combination of trend and decadal fluc-
tuation, exploring the range of effects produced by an ensemble
of simulations having varying intradecadal patterns. Fig. 7 is pre-
sented simply as an illustration of the range of available scenario
control.

The data through year 2011 shown in Fig. 7 consist of the actual
observational record (cf. the two panels), showing the ability of the
simulation model to capture the characteristics of the training data
to which it is fit. We visit this subject in more detail in Section 4

4. Validation and diagnostics

For validation purposes it must be kept in mind that the
simulated annual-to-decadal sequences are not intended to be pre-
dictive, in the sense that specific year-to-year or decadal-to-decade
variations are forecast. Rather, the simulations are designed to
explore future uncertainty ranges, given our knowledge of past
variability and likely future influences. Validation in this case takes
the form of comparison statistics.

4.1. Regional level

Table 2 compares the covariance matrix for the regionally aver-
aged, detrended observations with that for the long simulation

Table 2
Covariance matrices for the regional observations and long simulation sequence.

Observations Simulation

pr Tmax Tmin pr Tmax Tmin

pr 0.224 0.225
Tmax −0.084 0.237 −0.084 0.234
Tmin 0.025 0.110 0.155 0.025 0.108 0.154

sequence for balance factor 0.5, reconstructed using 20 EOFs. (The
values change slightly with f.) The Table shows that the simulations
replicate fairly accurately the observational covariance. A particular
slice of length 39 yr, the length of the synthetic portion of the sim-
ulation, will of course exhibit deviations from these values owing
to sampling variability.

A second temporal characteristic of interest is persistence,
or serial autocorrelation, in the individual variables, for which
observed and simulated values, computed similarly, are shown in
Table 3. The observational values are replicated by the simulation
to well within their uncertainty ranges.

4.2. Gridbox level

The EOF decomposition serves both to illuminate regional pat-
terns of variability (Fig. 3) and as a means of encoding variation at
the gridbox level. We focus here on the latter aspect as a function
of the number of retained modes.

4.2.1. Variance replacement
Since only a subset of leading patterns is used, the raw data

generated the VAR model will generally be variance-deficient.
The assumption is that the leading EOFs represent signal and the
remainder noise, as far as the simulation properties of interest
are concerned. The variance deficit is therefore corrected, at the
gridbox level, by adding uncorrelated noise to the raw simulation
values. Fig. 8 illustrates this procedure, using the precipitation field
from a 20-EOF simulation. Fig. 8a shows the ratio of observed to
simulated variance for the raw simulation data. The 20 PCs utilized
represent only about 90% of the data variance, and at every gridbox
the ratio of observed to simulated variance is greater than unity,
with values ranging as high as two.

The added noise variance at each grid is set equal to the differ-
ence between observed and simulated values, bringing the latter
into agreement with the former to within a random covariance
term. The result can be seen in Fig. 8b, where the checkerboard pat-
tern reflects slight mismatches due to this term. Note that the large
discrepancies of Fig. 8a have been replaced, in the corrected field,
by much smaller deviations. One can also see, for example, that in
the region lying approximately between 25–30◦ S and 50–55◦ W,
where the variance deficit was initially small, the applied correc-
tions and resulting random deviations are also small. We conclude

Table 3
Lag-1 autocorrelation coefficients for pr, Tmax, Tmin, for the regionally-averaged
observations and long simulation.

Source pr Tmax Tmin

Observations −0.070 0.155 0.143
Simulation −0.064 0.165 0.146



A.M. Greene et al. / Agricultural and Forest Meteorology 203 (2015) 217–228 225

Fig. 8. Ratio of observed to simulated grid-level variance, shown here for precipitation, (a) prior to variance correction, (b) after correction.

that this correction conserves observational variance patterns rea-
sonably well.

4.2.2. Point-to-point correlations
Fig. 9 compares gridbox-to-gridbox seasonal correlations in the

observed precipitation fields with those of simulations using 10,
20, 30 and 40 EOFs, with the comparison made before and after the
variance correction (top and bottom rows, respectively). The data
have been thinned for clarity.

Reproduction of these correlations is generally quite good, even
for N = 10 EOFs, although it does improve as N increases (reading
from left to right in each row). Variance correction, on the other
hand (reading from top to bottom in each column), has very little
influence. The difference is clarified if we think of EOF additions
and variance correction as adding signal and noise, respectively, to
the simulated field.

Fig. 9 is representative of results obtained for Tmax and Tmin,
although somewhat less improvement, relatively speaking, is seen
in going from N = 10 to N = 20 with those variables. Based on these
comparisons, particularly the more notable improvement in pre-
cipitation correlations in going from Figs. 9a and e to b and f,
respectively, the value N = 20 has been utilized for the simulations

discussed herein. Clearly there is some latitude in this choice, which
will depend on the agricultural modeling strategy adopted.

4.2.3. Additional comparisons
Point-to-point comparisons were also made of intervariable cor-

relations and serial autocorrelation in individual variables. Both
improve with the inclusion of additional EOFs, although the latter
is less sensitive to variance correction. Since EOFs by construction
maximize spatial covariance, and since the multivariate analysis
treats the different variables as if they were additional spatial coor-
dinates, this result is not unexpected.

5. Temporal downscaling

A final step in simulation generation is temporal downscaling,
here to monthly resolution; daily output is then generated in a post-
processing step, described in Section 6. The downscaling scheme is
the same modified k-NN method as employed in G12 (Rajagopalan
and Lall, 1999), and consists of searching within the observational
record for a small number, k, of distinct years whose regional
climate means, expressed as three-vectors with components pre-
cipitation, Tmax, Tmin, are closest, in terms of a probabilistic metric,

Fig. 9. Point-to-point seasonal precipitation correlations for 10-, 20-, 30- and 40-EOF simulations, plotted against observational values. Panels (a)–(d) show data prior to
variance correction, (e)–(h) afterward. The data have been thinned for readability.
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Fig. 10. Soybean yields at each of the stations for the 9-member basic simulation ensemble. For each station a gray bar shows mean simulated 20th-century yields; this is
followed by results for 2031–2040, collected into three groups. These correspond, from left to right, to balance factors f = 0.1, 0.5 and 0.9. Bars within each group show yields
associated with decadal precipitation fluctuations lying at the 5th, 50th and 95th percentiles, as shown in the legend. Error bars show ±1�, pooled across years and weather
generator realizations.

the Mahalanobis distance (Mahalanobis, 1936), to the vector of the
year being simulated. A weighted random selection among the k
candidates is made, and the monthly values of the selected year
are then nudged so that their vector mean agrees with that simu-
lated. This nudging is performed multiplicatively for precipitation,
additively for the temperature variables. The k-NN method mimics
those dependencies that are present in the observational data: For
example, if, during a wet year, precipitation tends to occur prefer-
entially in the late summer, this attribute will be carried over to the
simulations. The downscaling to daily values in G12 was found to
reproduce dependencies of wet and dry spells as well as 3-day wet
extremes. The use of k = 5 here is common with G12.

Seasonal output may be downscaled directly to the daily
time step through the use of AgMERRA. This bypasses the
weather generator step and permits the inclusion of additional
agriculturally-relevant variables, including insolation, dew point,
vapor pressure and wind speed. Use of the weather generator, on
the other hand, permits more rapid generation of many realizations
of daily variability.

6. Soybean yield simulations

The Hansen and Ines (2005) weather generator was used to cre-
ate, for each scenario in the nine-member basic ensemble, 100
realizations of daily weather sequences, for five station locations
along a transect extending from 37◦ S, 64◦ W to 28◦ S, 52◦ W
(Table 4). The transect originates in Argentina in the southwest,
passes through Uruguay and terminates in Brazil in the northeast,
sampling a range of climatologies. Simulations from the three grid-
boxes nearest each station were downscaled, using station-specific
parameter sets. In addition to daily values of precipitation, Tmax
and Tmin, the weather generator also simulates solar radiation,
based on distinct station climatologies for wet and dry days.

Yield simulations using the soybean crop model in DSSAT-CSM
(Jones et al., 2003) were then run for each of the downscaled scenar-
ios, using soil properties and a cultivar suggested by local partners
in the region. For each scenario, yields were averaged over the

Table 4
From left, the table shows station names and codes, countries, coordinates (latitudes
in degrees south, longitudes in degrees west), mean SONDJF precipitation (mm d−1)
and standard deviations for simulated yields across trends and decadal fluctuations
(�T and �F , respectively, t ha−1).

Station Code Country Lat Lon pr �T �F

Santa Rosa STAR Argentina 36.6 64.3 2.7 0.29 0.26
Pergamino PERG Argentina 33.6 60.3 3.5 0.47 0.31
La Estanzuela UYLE Uruguay 34.2 57.4 3.5 0.69 0.27
Trenta y Tress UYTT Uruguay 33.2 54.3 3.7 0.56 0.39
Paso Fundo PASO Brazil 28.2 52.4 5.4 0.35 0.15

three gridbox-level simulations at each location. Since the culti-
var is static, the modeled yield anomalies represent responses only
to climate variations.

Fig. 10 shows simulated yields at each of the stations for the 20th
century (1951–2000) and for each of the nine scenarios. The latter
represent the 2031–2040 period, during which specified decadal
precipitation fluctuations occur. For each station three groups of
bars are shown, corresponding to trend scenarios having balance
factors f = 0.1, 0.5 and 0.9, reading from left to right. The three bars
within each group correspond to decadal precipitation fluctuations
at the 5th, 50th and 95th percentiles, as indicated in the figure leg-
end. Thus the progression from left to right is from dryer to wetter,
both among and within groups.

The broad implications of Fig. 10 are clear. As future precipita-
tion trends, represented by f, increase, yields increase as well, at all
of the stations. For a given trend, yields during the test period are
then modulated by the specified decadal fluctuations, with wetter
decades corresponding to higher yields and vice versa. Responses
to the fluctuations are a little noisier than those associated with
the trend variations, with stations STAR and PASO showing non-
monotonic yield shifts as the test decade becomes wetter, for f = 0.1,
a scenario characterized by long-term drying (see Fig. 4b). The ±1�
error bars illustrate the importance of using a large simulation
ensemble, to reveal the common underlying response at each of
the stations.

For most of the stations the mean simulated 20th-century
response falls within the range of 21st-century simulations. Given
that the second half of the 20th century saw the full range of
stratospheric ozone levels (Fig. 4a), with depletion beginning after
midcentury and recovery shortly before year 2000, this may not
be a surprising result. Only for station STAR is the 20th-century
yield lower than any of the future values, perhaps reflecting
the fact that STAR is climatologically the driest of the locations
(Table 4).

A saturation-like response to increasing precipitation was iden-
tified by Podestá et al. (1999) for soybean yields in central-eastern
Argentina, in an analysis based on interannual yield variations and
the first principal component of the precipitation field over a group
of stations. Many differences in treatment render a direct compar-
ison with that result infeasible, but the preliminary crop modeling
results presented here certainly merit further investigation; this
will be undertaken in a separate publication.

A comparison of yield responses to differences in trend, with
those attributable to decadal fluctuations, appears in the two right-
most columns of Table 4, which show standard deviations taken
over trends (averaging the three fluctuation values for each trend
value) and across fluctuations (vice versa), for each of the stations.
The table shows that for the 2031–2040 period, using the computed
distributions and the selected quantiles, variations in trend have a
greater influence on yields than do decadal fluctuations. For earlier
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decades in the 21st century the relative effects of trend would be
reduced, compared with those of the fluctuations.

7. Discussion

In the foregoing we have tried to give both an overview of the
modeling scheme and a sense of the many details that must be
considered it its actualization. Although it may appear somewhat
complex, method design has nonetheless been guided by the prin-
ciple of parsimony, with the inclusion of only that level of detail
necessary to insure that simulated variability bears a reasonable
resemblance to that observed, and providing a defensible represen-
tation of uncertainty in our knowledge of future climatic changes.

The procedure described bears some resemblance to the delta
method but goes beyond it, in the generation of synthetic variabil-
ity rather than the reuse of observed sequences, in the layering
of multiple time scales and in the reliance on CMIP5 for future
distributions, rather than the use of arbitrary delta values. Syn-
thetic annual streamflow sequences for the Colorado River were
generated by Prairie et al. (2008) using a hidden Markov model
(Hughes et al., 1999) for streamflow state and k-NN resampling for
flow amplitudes. This was a univariate setting and the model did
not address climate change, but the generation of synthetic data
based on observations (in this case, paleodata) is common with our
approach.

There is a substantial literature on statistical downscaling, the
synthesis of which lies beyond the scope of this report (see Wilks
and Wilby, 1999, for a review). At the annual-to-decadal level the
present method functions something like a weather generator, pro-
ducing sequences having the statistics of observed variability. Yet
the incorporation of multiple time scales and their interactions
makes it an intrinsically more complex scheme. We are not aware of
other statistical downscaling methods that encompass this degree
of multilevel complexity, or that make use of a similar amalgam of
model and observational data.

8. Summary and conclusions

We have described a methodology for the stochastic generation
of future climate sequences over the SESA region. These sequences
extend out to a few decades in the future and include realizations of
annual-to-decadal variability as well as climate-change trends. The
data is downscaled to monthly resolution and for the purposes of
crop modeling further disaggregated to daily; direct downscaling
to the daily time step was discussed.

It is hypothesized that the two principal drivers of future pre-
cipitation trends in SESA are increasing greenhouse gases and
stratospheric ozone recovery. Uncertainty regarding the relative
effectiveness of these opposing influences is accounted for by the
provision of a factor f, by which a particular future balance can be
specified. Variations in f produce a range of trends spanning both
signs.

Trends in both precipitation and temperature are specified on
the regional level. In broadcasting these trends to the gridbox scale,
parameters are introduced by which grid-level trends are permit-
ted to scatter around the regional mean. These parameters permit
a reasonable degree of grid-level variation, based on observed
behavior, while, in the case of temperature, limiting the growth
of potentially unrealistic horizontal gradients.

Variability on the annual-to-decadal scale is generated by a
first-order vector autoregressive model fit to the detrended obser-
vational data, which is first prefiltered in terms of principal
components. Twenty modes are utilized, based on an assessment
of grid-level simulation statistics. Segments for individual simula-
tions are sliced from a long sequence of effectively unlimited length

according to several screening criteria, which select for a decade in
which precipitation lies near a specified quantile while the temper-
ature variables lie near their conditional means, given the specified
precipitation level. Simulation sequences are variance-corrected in
order to bring grid-level statistics into agreement with observed.
The final sequences, here spanning 1901–2050, are downscaled to
monthly time resolution using a k-NN variant.

Preliminary results using the agricultural model DSSAT-CSM
show that, for the near-term at least, precipitation seems to play
a dominant role in yield variations, non-climatic factors assumed
constant. Local variations from grid to grid, and from realization
to realization, speak to the importance of ensemble simulations,
which can aid in delineating both the mean response and the
expected spread on a range of time and space scales.

It is hoped that the simulations discussed herein, by providing
a set of plausible future climate trajectories whose uncertainties
may be quantified, will prove useful in delineating climate risks
and possibilities for SESA on near-term time horizons.
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