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Abstract 

 In an era of strict hazardous material-handling restrictions and intense energy 

savings projects, the Department of Defense has an opportunity to take advantage of a 

waste-to-energy initiative by looking to vintage diesel engine technology for inspiration.  

The idea comes in the form of recycled waste motor oil which can be used as a fuel in 

compression-ignition engines.  When mixed at a low blend ratio, waste motor oil can 

supplement diesel fuels to extend the range of fuel stores for electrical power generating 

equipment at contingency military bases while simultaneously decreasing the burden on 

fuel supply chain management and the hazardous waste disposal stream 

 This research looked at the feasibility of filtering, and then burning waste motor 

oil blends.  It also explored potential drawbacks which can threaten the lifespan of 

modern diesel engine components.  Analytical methods included spectrometry, 

chromatography, viscometry, electron microscopy, and Gaussian dispersion modeling to 

study filtering method effectiveness, engine component wear, and air pollution effects.   

The waste motor oil was diluted with diesel fuel to a point where metal 

concentrations were reduced to trace amounts.  This dilution allowed engine exhaust 

emission levels to remain below permissible exposure levels without the assistance of 

engine emissions mitigation hardware.  The Department of Defense can use these results 

for decisions-making when balancing energy security and environmental implications. 
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FEASIBILITY AND ENVIRONMENTAL IMPLICATIONS OF USING WASTE 
MOTOR OILS AS AN ALTERNATIVE SUPPLEMENTAL FUEL IN 

CONTINGENCY PRIME POWER GENERATION 
 

I.  Introduction 

General Issue 

In the final days of World War II, a problem arose when General George Patton’s 

3rd Army exceeded expectations on the march to Germany.  Gen. Patton’s jeeps, trucks, 

and tanks outran his fuel supply, and all the usable German petroleum depots had been 

previously targeted and destroyed by Allied aerial bombing (Patton, 1947).  The United 

States War Department realized that it was a massive undertaking to fuel a marching 

army.  During WWII, 55% of the tonnage shipped overseas was fuel.  During the Korean 

war, this rose to 67% (Blackburne & Sawyer, 1960).   

After WWII, the U.S. Army conducted research to address this problem.  The 

military’s complex and arduous logistic requirement to deliver fuel to the combat theater 

sparked an interest in developing an engine that could operate on a wide range of low-

cost fuels (Shipinski, Myers, & Uyehara, 1967).  By collaborating with U.S. agricultural 

tractor engine manufacturers and utilizing post-war German combustion research, the 

Army developed the “multifuel” engine.   

Interest in multifuel capabilities stems primarily from the logistic requirement of 

the military or the desire of the user to utilize low-cost fuels but was also an emergency 

capability in the event a military unit needed to get out of a situation where no primary 

fuel was available.  The compression-ignition concept engine was designed to burn 

primarily diesel fuel, but the components of the engine were built robustly to handle a 
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wide array of similar fuels – incorporating almost any combustible fuel a marching army 

could get its hands on in a combat zone.  These permissible fuels included jet fuel, 

kerosene, gasoline, commercial burner oils, etc. They are detailed later in Table 4 which 

is copied from Army Technical Manual 9-2320-361-10 (U.S. Army, 2006).  

Increasingly over the past decade, civilian collectors have been buying retired 

multifuel-powered vehicles such as the classic Vietnam era 2-1/2-ton and 5-ton cargo 

trucks from government surplus auctions.  To fuel these trucks affordably, private owners 

have experimented with fuels outside the scope of the Army’s permissible fuel listing, to 

include Waste Vegetable Oil (WVO) and Waste Motor Oil (WMO).  Both are readily 

available to the public and usually free of charge to anyone willing to haul them away.  

With various levels of filtering to ensure removal of harmful impurities, many fuel blends 

have been created and discussed in hobby sectors of the general public.   

The precision manufacturing and fuel injection technology of today has increased 

fuel efficiency and power output, while decreasing the harmful exhaust emissions from 

compression-ignition engines using state-of-the-art common rail fuel supply and various 

other refined hardware and computer software components.  But this increased 

performance comes at a price.  The ability to consume multiple fuel sources, such as 

WMO blends, may be hampered by more sensitive fuel systems and environmental 

regulations. 

When thinking of multiple fuel sources, the spectrum broadens to any refined 

petroleum product.  There is an abundance of used petroleum products in deployed 

military bases produced by ground vehicle and aircraft maintenance shops.  One subject 
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of this research is the disposal of these products within the hazardous waste stream.  If it 

is legal and feasible to collect these products before disposal and/or recycling, the 

research will continue into the practicality of processing the products for use as fuel in 

the DoD’s War Reserve Materiel (WRM) modern electrical power generators. 

As found by Capt Daniel Amack in his 2014 thesis, Waste-to-Energy Decision 

Support Method for Forward Deployed Forces, waste-to-energy projects have the 

capability to offset the security risks associated with convoy operations and reduce the 

reliance on the fuel. They add a measure of self-sufficiency to their daily operation, no 

longer being as reliant on a supply of fuel being sent to their location (Amack, 2014). 

Rationale 

Goals of the Department of Defense include reducing energy consumption (EPAct 

05), greenhouse emissions (EO 13693), and the costs of fuel purchase and transport.  This 

research aligns with those goals by looking at ways to reduce the burden on the 

hazardous waste stream while finding a suitable substitute for WMO recycling.  Waste-

to-energy recycling offers an advantageous solution to this situation.  The concept is to 

utilize existing filtration and storage systems to render the WMO as a usable fuel for 

deployed location diesel power generation while taking air pollution factors into 

consideration.  The final goal of this research, if proven feasible, will be to develop 

possible operating procedures for Air Force Civil Engineer craftsmen to collect and filter 

WMO for use as an alternative supplementary fuel for power plants at deployed 

locations. 
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 At the present time, fuel is relatively inexpensive.  However, it fluctuates and may 

be expensive yet again.  More burdened cost is incurred when the military must haul it in 

to combat zones either by aircraft, naval vessel, or truck which can cost servicemen and 

women their lives.  A 2009 Army Environmental Policy Institute study showed that in 

2007 alone, one soldier was killed or wounded for every 35 fuel resupply convoys in Iraq 

and Afghanistan. That was 170 casualties over 6030 convoys to transport 589,841,670 

gallons of fuel in one year (AEPI, 2009)  A 2010 Noblis report for the Strategic 

Environmental Research and Development Program titled Sustainable Forward 

Operating Bases found that at the peak of Operations Enduring Freedom and Iraqi 

Freedom in 2007, DoD operations in Iraq and Afghanistan were consuming 22 gallons of 

fuel per soldier per day.  This was a 175% increase since the Vietnam War.  By 2008, 

DoD was consuming over two million gallons of fuel per day (Noblis, 2010). 

 At Wright-Patterson AFB in FY15, the entire base used six million gallons of 

fuel, represented in Figure 1.  92% of that was Jet-A used in aircraft.  The remaining 8% 

was for ground vehicles and generators.  4% was gasoline, either regular unleaded or E85 

ethanol.  The remaining 4%, or 244,000 gallons was diesel fuel, either D1 winter blend, 

D2 summer blend, or B20 biodiesel.  Since the base does not rely on generating its own 

electricity, almost all the diesel fuel was used to fuel ground vehicles.   



5 

 

Figure 1 - FY15 Fuel Usage at Wright-Patterson AFB 

 

In addition to this fuel usage information, the 88th Civil Engineer Squadron’s 

Environmental Flight reported that Wright-Patterson AFB disposed of approximately 

39,000 gallons of WMO in CY16.  Relating the amount of oil disposed to the amount of 

total fuel consumed by the base gives 39,000 gallons of oil to 6,000,000 gallons of fuel, 

or 0.65%.  This number does mean much, but puts the ratio into perspective. 

Nonetheless, it was reported by the Air Force Petroleum Agency (an office within 

Defense Logistics Agency) that in CY16, Al Dhafra Air Base used 1.6 million gallons of 

diesel fuel just to generate electricity (Defense Logistics Agency, 2017).  Making a bold 

assumption, if Al Dhafra disposes of approximately the same amount of WMO as 

Wright-Patterson AFB does in a year, then the potential blend percentage of available 

WMO to diesel fuel used in generators could be 39,000 gallons of oil to 1,600,000 

Jet Fuel
92%

Gasoline
4%

Diesel Fuel
4%

Jet Fuel

Gasoline
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gallons of fuel, or 2.4%.  This number will be significant in later discussion and will 

compare to a manufacturer’s allowable blend ratio. 

 All this WMO is considered hazardous waste, however, according to 40 CFR § 

279.1, as soon as it is mixed with a fuel to be used as a fuel, then it is no longer subject to 

used oil regulations, which will be explained in the chapter II (EPA, 2012).  For the 

purposes of this study, WMO will be limited to SAE 5W-30 and 15W-40 conventional 

motor oils and Automatic Transmission Fluid (ATF).  Realistically however, WMO will 

cover a range of automotive and aircraft fluids to include motor oils, transmission fluids, 

brake fluids, hydraulic fluids, and even dirty diesel and gasoline emptied from spent fuel 

filter cartridges.  They are collected in one common point called a satellite accumulation 

area, as can be seen in Figures 2 and 3. These fluids can all be mixed together, filtered, 

and used as a substitute for diesel fuel.   

 

Figure 2 - Waste Motor Oil Collection Area with Filter Crusher 
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Figure 3 - WMO Satellite Accumulation Area 

 

This study examines the feasibility of burning these byproducts as a fuel 

supplement.  It may not be a simple yes or no but instead may define a threshold of 

certain WMO components that a generator engine can handle.  All blends of these fluids 

are known to produce less power and more harmful emissions than regular diesel, but the 

extent is not well known.  This study will primarily address the physical and chemical 

characteristics of these blends to compare them to diesel fuel but will also investigate the 

potential for harmful exhaust emissions and potential damage that could affect a modern 

generator’s fuel delivery system. 

Current Events 

The researcher held a phone interview in July 2016 with Mr. Patrick Ross, the 

powered support systems foreman for the Civil Engineer Maintenance Inspection and 

Repair Team (CEMIRT).  Located at Tyndall AFB, Florida, CEMIRT is responsible for 
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keeping a portion of the USAF’s complex WRM assets in excellent working condition.  

This team is comprised of individuals each with decades of experience in the field of 

electrical power production equipment.  

In early July 2016, a hot topic in the news was the dramatic and unexpected event 

of a military coup in the country of Turkey.  Following this event, all electrical power and 

supplies to US military installations were cut off, which triggered the continuous use of 

backup emergency power for six days.  The power production team at Incirlik Air Base 

ran 156 emergency generators and two prime power plants for 24 hours a day until local 

grid power was restored.  As the political turmoil lingered, the bases quickly depleted 

their diesel fuel reserves.  The deployed engineers at these bases called back to CEMIRT 

for expedient technical assistance.  They needed to know what different types of fuels 

their generators could burn and what repercussions, if any, would result from operating 

on alternative fuels.  The team at Tyndall quickly discovered that this task was not 

straightforward as they found that there were seventeen manufacturers of generators 

being used across the bases in Turkey at the time.  The specifications of each engine 

needed to be analyzed before a final answer could be given.  CEMIRT worked tirelessly 

to determine what kinds of alternate fuels their generators could burn and to what percent 

of blending would ensure adequate fuel system lubrication.  In addition, when operating 

on alternative fuels, power output de-rating had to be calculated to determine the 

capability of each generator set.  This proved to be a daunting task, but resulted in all 

military bases gaining a posture for energy security in the event that diesel fuel did 

indeed run out. (P. Ross, phone interview, 28 July 2016) 
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Research Questions 

The Air Force has an opportunity to revive an old concept for waste-to-energy 

recycling for combat applications.  After review of an engine manufacturer’s 

recommendation, it was determined that it is feasible to burn oil in a modern diesel 

engine fuel delivery system, which will be further discussed in the next section.  There 

are limitations with supplementing diesel fuel with alternative blends, but the following 

research questions should address whether this idea is feasible and how it effects the 

environment: 

 How much filtration is required for WMO to be considered clean enough for use? 

 What harmful environmental effects exist?  

 

Research Focus 

 For electric power generation at deployed locations, Air Force Civil Engineers 

employ a wide variety of generator sizes available in the Basic Expeditionary Airfield 

Resources (BEAR) kit.  While the intent of this research is to identify a fuel blend that 

will have minimal issues in any diesel generator, the answer is not straightforward.  Each 

engine manufacturer has its own set of design specifications to which they build.  If this 

research were to attempt to find a blanket fuel blend that applies equally to all generators, 

it would have implications on ability to collect a broad spectrum of data.   

Wide ranges of specifications vary with engine manufacturer, size, use, and local 

emissions regulations, causing the researcher to limit the focus of this topic and choose 

one engine to target all technical considerations.  The researcher chose the largest engine 
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in the Air Force WRM fleet, the Cummins QSK38.  The engine powers the Air Force’s 

800kW BEAR Power Unit (BPU) in contingency locations around the world.  The BPU 

is shown in Figure 4.   

The engine in the obsolete MEP-012a generators (replaced by the BPU) was 

based on a marine application, the KTA38-G7.  It was a 1080-horsepower prime power 

unit which utilized Cummins’ patented Pressure-Time (PT) mechanical fuel injection 

system.  This system was very robust and already compatible with JP-8, a kerosene based 

aircraft engine fuel with almost unnoticeably different characteristics to diesel fuel 

(Drake, 2010).  The BPU uses this same base engine platform, but upgrades include 

moving to an electronic fuel injection system, the Modular Common Rail System 

(MCRS) which is more sensitive to particles in the fuel.  An Air Force contract 

modification remedied this by specifying a different set of injectors that allow for 

multifuel operation utilizing primarily diesel and JP-8.  The injectors are manufactured 

by Bosch.  This retrofitted model of engine became the QSK38-G5 (Cummins, 2009).  

Cummins has declared in its fuel specifications, that a blend of oil may be used to 

enhance diesel fuel lubrication properties, but the maximum recommended blend ratio is 

5% oil to 95% diesel fuel.  Recall earlier in this chapter that it was estimated that Al 

Dhafra Air Base only produced enough WMO to make a 2.4% blend ratio.  From this 

point forward, Cummins’ 5% blend will be addressed.  Anything less will be considered 

allowable as seen fit with any other recommendations. 
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Figure 4 - BEAR 800kW Power Unit with Cummins QSK38 

 

Methodology 

The methods used in this research will include filtration, chromatography, and 

microscopy performed at the AFIT laboratory paired with titration, viscometry, 

spectrometry, and other services rendered by a contracted tribology lab.  All methods will 

be discussed in Chapter III.  Analytical test results were compared to OSHA exposure 

limits and a Cummins, Inc. fuel service bulletin. 

Assumptions and Limitations 

 This research assumes the reader has limited but sufficient prior knowledge on the 

matter of diesel fuel, electrical power generation, the nature of supply and logistics in a 

combat environment, and a moderate to advanced chemistry and physics background.  

Testing methods, chemical properties of motor oil, and advanced components of a diesel 

engine will be explained in detail.  
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Due to limited resources, time, and challenges with local lab equipment, many 

tests were contracted to a tribology lab.  The limitation with the most impact was the 

inability to carry out a particle measurement and concentration test.  This information 

was crucial to determining the effect on an engine’s fuel delivery system components.  

Without this, the researcher made several assumptions and consulted experts in the field 

of alternative diesel fuels. 

Implications 

 Obtaining a test engine would have also been beneficial, but the 5% oil blend cap 

set the threshold for testing relatively low to begin with. Testing oil blends in an engine 

would not have given fidelity of test results without hundreds of hours of running and 

would have required highly detailed analyses of components after use.  This is a 

destructive test method, meaning the engine components likely would have been run to 

failure in the name of research and would have cost the government more money than 

necessary in repair bills.  

One commonly discussed property is the cetane number which relates to the 

ignition quality of diesel fuel.  It is expected that cetane number will have minimal 

impact from adding oil to fuel.  This educated suspicion combined with the fact that a 

very expensive standard engine would need to have been attained to carry out the 

physical characteristics test led to the decision to leave the subject out of the discussion. 
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Definition of Terms 

 Waste Motor Oil or Used Oil is a byproduct from performing maintenance on 

equipment.  It is defined by 40 CFR § 279 Standards for the Management of Used Oil as 

any oil that has been refined from crude oil, or any synthetic oil, that has been used and 

as a result of such is contaminated by physical or chemical impurities (Code of Federal 

Regulations, title 40, sec. 279.1) 

 Disposer is used in this thesis as “generator” to distinguish between the meaning 

of electrical power generating equipment and the EPA-defined definition as follows; A 

disposer means any person, by site, whose act or process produces used oil or whose act 

first causes used oil to become subject to regulation. 

 Collector, or transporter, means any person who transports used oil, any person 

who collects used oil from more than one generator and transports the collected oil, and 

owners and operators of used oil transfer facilities.  

 Processing means chemical or physical operations designed to produce from used 

oil, or to make used oil more amenable for production of, fuel oils, lubricants, or other 

used oil-derivative product.  Processing includes but is not limited to: blending with 

virgin petroleum products, blending used oils to meet fuel specification, filtration, simple 

distillation, chemical or physical separation, and refining.  
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Preview 

In a contingency environment where lives are on the line, electrical power must 

be uninterruptable and energy must come from a secure source.  Environmental concerns 

must be at the forefront of daily operations but may be a lower priority when security is 

the main concern.  Having alternative fuels in mind is never a bad idea when it comes to 

the defense of the nation. 

Conclusion 

This research will look at mid-twentieth century U.S. Army research, as well as 

newly rediscovered interest from the civilian hobby sector for technical support.  This 

WMO recycling idea has been attempted before, but emissions regulations have 

hampered the effort.  With the advent of more refined emissions control hardware, this 

idea may yet again gain traction. 
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II. Literature Review 

Introduction 

The World Environment Conference held in Kyoto in 1997 confirmed the drastic 

need to reduce petroleum waste discharge into the environment (Leask, 1998).  In fact, it 

was estimated that less than 45% of available waste oil was being collected world-wide in 

1995.  The remaining 55% was either misused or discarded by the end user in the 

environment.  In this sense, the treatment and reuse of oils provides a suitable way for 

WMO management by promoting energy conservation and environmental sustainability.   

For example, 1 liter of waste oil re-processed as fuel contains about 8000 

kilojoules of energy, or 2.2 kilowatt-hours, which is enough energy to light a 100-Watt 

bulb for nearly 1 day (El-Fadel & Khoury, 2001).  According to the 88th Civil Engineer 

Group’s Environmental Flight, in 2016, Wright-Patterson AFB disposed of 39,374 

gallons (149,047 liters) of WMO.  By the same extrapolation, Wright-Patterson could 

have provided 1,192,344,000 kilojoules, or 331 Megawatt-hours which could power the 

entire base for one day. 

As explained by a 2009 Government Accounting Office report to the 

Subcommittee on Readiness, Committee on Armed Services in the House of 

Representatives, the DoD reported for the fiscal year 2007, that it had consumed almost 

4.8 billion gallons of mobility fuel which cost $9.5 billion to taxpayers.  This cost 

represents less than three percent of the DoD’s total budget – the DoD has estimated that 

for every $10 increase in the price of a barrel of oil, operating costs increase by 

approximately $1.3 billion (Solis, 2009).  Three percent may seem insignificant, but 
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considering the massive magnitude of the DoD’s budget, it is a significant burden on the 

American taxpayer.  Any methods of energy conservation that do not compromise 

mission safety need to be considered. 

Disposal of WMO 

Each year, the U.S. generates about 1.4 billion gallons of used oil.  There are 

approximately 700,000 facilities that qualify as disposers including a wide range of 

businesses that use automotive lubricants in addition to industrial, hydraulic, 

metalworking and other oils (Arner, 1995). 

As defined by the Resource Conservation and Recovery Act (RCRA) of 1976 and 

Hazardous and Solid Waste Amendments of 1984, there are three players in the oil 

recycling business: generators, collectors, and processors (Bell et al., 2011).  For the 

purposes of this research to eliminate confusion with the term “generator” as it is used to 

describe electrical power generation machinery, from this point forward, a person or 

place generating waste oil will be known as a “disposer”.  Disposers are the mechanics 

doing maintenance on equipment. These mechanics are draining the fluids to be disposed.  

Collectors are the middlemen that purchase and transport the WMO in trucks to 

collection facilities.  Processors employ different methods of recycling or disposal 

depending on their local market and environmental regulations.  Not all collectors are 

processors, but in most cases, it makes good business sense for the processor to own his 

own truck for collection from his customers.  In the case of this research, the DoD will 

perform all three roles.  On a military installation, the motorpool and aircraft maintenance 

hangars are the generators, either the aircraft and vehicle maintainers or civil engineers 



17 

are the collectors, and power production and water/fuels maintenance craftsmen are the 

processors. 

The EPA’s Resource Conservation and Recovery Act (RCRA) has some leniency on 

the issue of burning WMO for energy recovery.  As stated in 40 CFR § 279.11, used oil 

may be burned for energy recovery as long as it meets a few specifications.  Those are 

listed below in Table 1 (EPA, 2012).   

Table 1 - Used Oil Specifications (EPA, 2012) 

Constituent/Property Allowable Level 
Arsenic 5 ppm maximum. 
Cadmium 2 ppm maximum. 
Chromium 10 ppm maximum. 
Lead 100 ppm maximum. 
Flash Point 100°F minimum. 
Total Halogens 4,000 ppm maximum. 

 

In addition to RCRA leniency, a DoD agency even recommends WMO blending.  

According to the Joint Service Pollution Prevention Opportunity Handbook, it is possible 

to recycle used lubricating oils generated from fluid changeouts.  On-site recycling 

options for used lubricating oil are typically limited to energy recovery such as diesel fuel 

supplementation.  The criteria that must be used in electing on-site recycling options 

involve the volume of use lubricating oil generated annually.  Diesel fuel on-site use 

includes the volume of diesel fuel used, volume of lubricating oil generated, diesel engine 

warranty, and activity policy.  Recycling of used oil may allow the used oil to fall under 

the less stringent regulations of 40 CFR § 279 as opposed to the hazardous waste 

regulations in 40 CFR § 260-268.  In addition, under 40 CFR § 261.5, generators who 

recycle their used oil and manage it under 40 CFR § 279 do not have to count the used oil 
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in their monthly totals of hazardous waste generated.  The decrease in the quantity of 

hazardous waste generated monthly may help a facility reduce their generator status and 

lessen the degree of regulatory requirements (i.e. recordkeeping, reporting, inspections, 

transportation, accumulation time, emergency prevention and preparedness, emergency 

response) applicable under RCRA, 40 CFR § 262.  Recycling used oil on site generally 

requires a facility to store large quantities of used oil.  Development and implementation 

of a Spill Prevention, Control, and Countermeasure Plan is required under 40 CFR § 112 

for facilities that store certain amounts of oil on site.  In addition, the burning of used oil 

on site may require an air permit (JSPPOH, 2000). 

Finally, to understand what types of oil are being recycled, a representative 

sample based on real world application must be modeled.  Since this mixture changes day 

to day depending on the type of maintenance scheduled in the vehicle shop and the 

barrels are filled up on approximately a weekly to monthly basis, a fixed recurring 

mixture is impracticable to capture.  To compensate for this, a mechanic at the 88LRS 

large vehicle maintenance shop provided his experienced estimate on WMO fluids 

collection ratio, shown in Figure 5. 
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Figure 5 - Model of Estimated Average WMO Collection Tank Constituency 

 

Drawbacks 

Disposing of WMO may result in harmful contaminants polluting air or water.  

Through the process of combustion, contaminants are released into the air which can 

have harmful effects such as acid rain, as well as general human and animal health issues.  

Contaminants and their probable sources are listed below in in Table 2 which is adapted 

from a 2001 journal article by M. El-Fadel and R. Khoury title Strategies for Vehicle 

Waste-Oil Management: A Case Study.  The study was carried out in Lebanon and 

included high levels of lead due to leaded gasoline.  Since this is no longer a concern, the 

lead levels were excluded (El-Fadel & Khoury, 2001). 
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Table 2 - Contaminants of Potential Concern in Waste Oils (El-Fadel & Khoury, 2001) 

Organic contaminants Probable Source 
Approximate 
Concentration Range1 

Aromatic Hydrocarbons   

Polynuclear (PNA) 
Petroleum base stock 360–62,000 

Benzo(a)pyrene 
Benzo(a)anthacene  870–30,000 
Pyrene  1,670–33,000 
Monoaromatic 

Petroleum base stock 900,000 
Alkylbenzenes 
Diaromatic Napthalenes 
 

Petroleum base stock 440,000 

Chlorinated Hydrocarbons   

Trichloroethanes 
Chemical reactions during 
use of contaminated oil 

18–1,800 

Trichloroethylenes  18–2,600 
Perchloroethylene 
 

 3–1,300 

Metals   

Barium Additive package 60–290 
Zinc  630–2,500 
Aluminum Engine or metal wear 4–40 
Chromium  5–24 

1All values in g/L, except metals in mg/kg (ppm). 

 

Impact of Clean Air Act 

 According to a policy analysis from the California EPA, an assessment was 

performed on different used oil management methods, “Used oils contain significantly 

higher concentrations of heavy metals, sulfur, phosphorus, and total halogens compared 

to low-sulfur crude-based heavy fuel oils. Because of a generally low quality as fuel, used 

oil is commonly blended with other fuel oils before use.  With blending, the specific level 

of contaminants in the finished fuel is lowered to an acceptable level for equipment 

specifications and temporal emission limits for any given user.  Combustion of a blended 

fuel is assumed to not affect the net release of emissions with time; that is, from a life-
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cycle perspective, the net emissions per unit of used oil consumed remain the same 

regardless of dilution” (Boughton & Horvath, 2004). 

 

Metals Analysis 

The effects of metals contamination may have negative effects on air quality and 

pose a risk to human health.  To determine metals content, spectrochemical analysis 

ASTM Method D5185 was employed with the use of Inductively Coupled Plasma – 

Atomic Emission Spectrometry (ICP-AES).  The samples were digested with nitric acid 

prior to analysis.  The EPA requires that use of this method be restricted to use by, or 

under supervision of spectroscopists appropriately experienced and trained in the 

correction of spectral, chemical, and physical interferences.  

As described by tribologist Ashley Mayer in her journal article 4 Oil Analysis 

Tests to Run on Every Sample, “ICP spectroscopy is perhaps the most important and 

useful test in used-oil analysis, but it does have limitations.  A key drawback is the size 

limit of the particles it can vaporize.  It does not detect particles beyond the five- to eight-

micron range” (Mayer, 2006). This is a problem because that particle size range is the 

most damaging to engine systems.  It is assumed the engine’s stock filtration system will 

address these medium sized particles, but without the ability to determine what is present 

in this size range, ICP spectroscopy cannot give a clear picture of potential engine 

damage.  There are other test methods available for determining particle size and 

distribution in a fluid, but the researcher was unable to arrange such tests due to lack of 

time and local resources.  This was a major drawback to the endgame of this thesis, but 

leaves a starting point for a future researcher to address. 
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Criteria of Fuels 

Diesel fuel is a complex mix of thousands of compounds, most of which are 

members of the paraffinic, naphthenic, or aromatic class of hydrocarbons.  Each class has 

different physical and chemical properties.  Different relative proportions of these three 

classes make diesel fuels different depending on the supplier (Bacha et al., 2007).   

With this wide range of physical and chemical properties all branded under the 

diesel fuel umbrella, what makes the fuel acceptable for use?  How is that defined?  And 

when there is a potential to unintentionally add contaminants, how dirty is too dirty?  

When attempting to filter out contamination, how clean is clean enough?  What happens 

if a less-than-acceptable fuel is used?  Cummins, Inc published a manual on operating the 

BPU series generators (Cummins, 2015).  The manual describes substitute fuels and state 

that diesel fuels, commercial fuel oils, kerosene, and jet fuels are generally within 

prescribed limits.  What are these prescribed limits?  

In 2017, Cummins published an updated service bulletin titled Fuel for Cummins 

Engines which was written to help their engineers and customers alike understand proper 

fuel selection and problems associated with less-than-desirable fuel conditions.  The 

bulletin describes the “required” diesel fuel specifications, adapted in Table 3 below, to 

provide the highest efficiency, performance, and reliability with the lowest maintenance 

costs.  However, the most useful section for this research effort is the description of 

“contingency” diesel fuels (Cummins, 2017). This table will be the standard against 

which to measure WMO blends.  In cohesion with this thesis’ research questions, the goal 

was to determine if a 5% WMO blend fits within these acceptable fuel parameters while 

balancing air emissions and engine wear characteristics.    
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Table 3 - Required Fuel Specifications for Cummins Engines (Cummins, 2017) 

 Required Diesel Fuel (2017)1 Contingency Diesel Fuel (2017)2 
Kinematic 
Viscosity 

1.3 to 4.1 centistokes at 40°C 
 

1.3 to 13.1 

Cetane Number 42 minimum above 0°C 
45 minimum below 0°C 
 

35 
40 

Sulfur Content Not to exceed 5000ppm 
[based on region] 
15ppm for ULSDa 
 

20,000ppm 
Catalyst equipped engines will be 
damaged 

Sodium Content 0.5ppm 
maximum 

10ppm 

Water & Sediment Not to exceed 0.05 volume-percent 
 

0.5 volume-percent 

Carbon Residue Not to exceed 0.35 mass-percent on 10 
volume-percent residuum 
 

Not to exceed 5.0 mass-percent 
on 10 volume-percent residuum 

Density 0.816-0.876 g/cc at 15°C 
 

0.750-0.965 

Cloud Point Should meet lowest expected ambient 
temp 

6°C below lowest ambient temp 
for expected operation 
 

Ash Not to exceed 0.01 mass-percent 
 

0.05 mass-percent 

Distillation 90 volume-percent at 360°C 
The distillation curve must be smooth 
and continuous 
 

90 volume-percent at 395°C 

Lubricity HFRR 520 micron maximum 
Wear Scar Diameter at 60°C 
 

600 micron3 

Heavy Metals  Vanadium    5ppm max 
Aluminum    1ppm max 
Silicon           1ppm max 

1Ultra Low Sulfur Diesel – Required in all highway diesel vehicles as of 2006. 
2Additional maintenance may be required when using contingency fuels. 
3A lubricity additive must be used if the fuel does not meet the minimum lubricity specification. 

 

Vintage Diesel Systems 

 Diesel engines were invented in 1880s Germany by Rudolph Diesel.  The concept 

is different than gasoline engines in that it uses compression ignition instead of spark 

ignition.  The principle relies on introducing the fuel to the combustion chamber under 
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much higher pressure than in gasoline engines.  Fuel injection methods improved under 

the engineering help from Bosch, GmbH which still supplies fuel injection systems today. 

 A basic diesel engine operates on direct injection where the piston draws in air 

and compresses it.  At the end of the compression stroke, the fuel is injected directly into 

the cylinder under high pressure then auto-ignition commences. 

The concept of a diesel engine being omnivorous, or “multifuel-capable”, dates 

back to experimentation tried by the inventor himself.  Primitive diesel engines were tried 

with vegetable oils, peanut oil, and even coal dust. 

To further this multifuel capability, Continental Aviation & Engineering 

Corporation was contracted by the U.S. Army Ordnance Corps in the 1950s to develop 

the LD-465 (naturally aspirated) and LDS- and LDT-465 (turbosupercharged) 

“multifuel” engines.  These engines, shown in Figure 6, hosted state-of-the-art principles 

and components that enhanced the Army’s capability to burn a wide range of fuels as it 

applied in their newest two-and-a-half- and five-ton cargo trucks, as shown in Figure 7. 
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Figure 6 - Multifuel Engines Developed in 1955 for the U.S. Army (Isley, 1967) 

 

  

Figure 7 - Comparison of M-35 and M-51 U.S. Army trucks (Isley, 1967) 

 

The engines utilized the principle of Hypercycle combustion.  Developed at 

M.A.N., a German diesel engine manufacturer, J.S. Meurer summarized Hypercycle 

combustion in 1955 as “a system that introduces fuel by depositing it in the form of a thin 

liquid film onto the walls of a spherical combustion chamber which is centrally located in 
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the piston crown.  Formation of fuel layers is assisted by strong swirling action of the 

combustion air, which in today’s design is generated by means of specially shaped intake 

ports. Combustion then takes place after gradual and progressive evaporation of the fuel 

from the combustion chamber walls at surprisingly low rates of pressure rise” (Meurer, 

1967).  This system design can be visualized in Figures 8 and 9. 

 

 
Figure 8 - Major Components of the LD/LDS/LDT-465 Engine (Isley, 1967) 



27 

 
Figure 9 - Spherical Combustion Chamber in Multifuel Engine Piston (Elkotb, 1980) 

 

The added components consisted of air intake swirl ports, a heated air intake 

manifold, and a fuel density compensator, which assisted the fuel delivery characteristics 

with changes in fuel viscosity (Shipinski et al., 1967)(Isley, 1967).  Besides add-on 

hardware, the multifuel LD/S/T-465 operated at a 22:1 compression ratio, much higher 

than other diesel engines in its class (U.S. Army, 1981).  This was achieved by more 

robust construction of engine components and helps to reduce ignition delay (Shipinski et 

al., 1967).  The combination of these components and combustion principles enabled 

these vintage engines to handle a variety of fuels without fear of catastrophic damage or 

accelerated component wear.  To show just how multifuel-capable these engines were, 

refer to Table 4, which is copied from the Operators Manual for the U.S. Army M35A2 

2-1/2-ton truck that was powered by the LDT-465 engine from the 1950s until the truck 

was retired in the late 2000s (U.S. Army, 2006). 
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Table 4 - Permissible Fuels for M35A2 Multifuel Engine (U.S. Army, 2006) 

Fuel Lower Temperature Limit  
(Do Not Use Below This Temperature) 

Primary Fuels  

Diesel fuel, VV-F-800, grade DF-2 (NATO code no. F-54) +32 °F (0 °C) 

Diesel fuel, VV-F-800, grade DF-1 (NATO code no. F-54) -10 °F (-23 °C) 

Diesel fuel, VV-F-800, grade DF-A (NATO code no. F-54) Can be used at all temperatures. 

Alternate I Fuels  

Turbine fuel, MIL-T-5624, grade JP-5 (NATO code no. F-44) -51 °F (-46 °C) 

Distillate fuel, MIL-F-24397, ND (NATO code no. F-85) +40 °F (+4 °C) 

Commercial diesel fuel (ASTM D975) 2-D and no. 2 +32 °F (0 °C) 

Diesel fuel, MIL-F-16884 (NATO code no. F-75 or F-76) +15 °F (-9 °C) 

Commercial diesel fuel (ASTM D975) 1-D and no. 1 -10 °F (-23 °C) 

Turbine fuel, aviation, MIL-T-38219 grade JP-7 -46 °F (-43 °C) 

urbine fuel, aviation, kerosene type, MIL-T-83133, grade JP-8 (NATO 
code no. F-34) 

-58 °F (-50 °C) 

Aviation gasoline, MIL-G-5572, AVGAS 80/87 (NATO code no. F-12) -76 °F (-60 °C) 

Commercial aviation gasoline (ASTM D910) grade 80/70 -72 °F (-58 °C) 

Commercial gasoline, leaded, low lead or unleaded, when research 
octane number is 89 or below, or octane number displayed on retail 
gasoline pumps in CONUS is 85 or below 

* 

Commercial aviation turbine fuel (ASTM D1655), jet A -40 °F (-40 °C) 

Commercial aviation turbine fuel (ASTM D1655), jet A-1 -52 °F (-47 °C) 

Any mixture of primary and/or alternate I fuels listed above. * 

Alternate II Fuels  

Turbine fuel, MIL-T-5624, grade JP-4 (NATO code no. F-40) -72 °F (-58 °C) 

Turbine fuel, aviation, naphtha-type (ASTM D1655), jet B -58 °F (-50 °C) 

Gasoline, unleaded/low-leaded, VV-G-001690, special grade (91/82) * 

Combat gasoline, MIL-G-3056, MOGAS (NATO code no. F-46) 0 °F (-18 °C) 

Gasoline, automotive (NATO code no. F-50) * 

Gasoline, W-G-76, regular and premium grades * 

Gasoline, unleaded/low-leaded, VV-G-001690, regular and premium 
grades 

* 

Aviation gasoline, MIL-G-5572, AVGAS 100/300 (NATO code no. F-
18) 

-75 °F (-59 °C) 
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Commercial aviation gasoline (ASTM D910), grade 100/130 -72 °F (-58 °C) 

Commercial gasoline (ASTM D439), leaded, low- lead, or unleaded, 
where research octane number is above 90, or octane number displayed 
on retail gasoline pumps in CONUS is above 86 

* 

Any mixture of alternate II with primary, alternate I, and/or alternate II 
fuels listed above 

* 

Emergency Fuels  

Burner fuel oil, VV-F-815, grade FO-1 0 °F (-18 °C) 

Burner fuel oil, VV-F-815, grade FO-2 20 °F (-7 °C) 

Commercial burner fuel oil (ASTM D396), grade FO-1 0 °F (-18 °C) 

Commercial burner fuel oil (ASTM D396), grade FO-2 20 °F (-7 °C) 

*Any temperature at which fuel will flow. 

Modern Diesel Systems 

Many advancements have been made in diesel engine technology in the latter half 

of the 20th century.  Advances have been made in efficiency, longevity, and power.  And 

because of environmental concerns, some of those efforts have even been hampered with 

the strict EPA regulations rolled out in a tier system as manufacturers can catch up to the 

changing air and noise pollution policies.  

Vintage injections systems were only capable of a few thousand pounds of 

pressure, but developments in common rail injection direct injection systems have 

increased that pressure tenfold. Today’s injection systems operate in the 20,000 to 

40,000psi range. 
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Figure 10 - Cummins QSK38-G5: Powerplant of the BPU 

 

Some modern diesel engine fuel systems even utilize optical fuel sensors to detect if 

the fuel is too dirty for use.  If a dirty fuel is detected, the computer shuts down the 

engine to protect it.  If a device like this existed on a military engine, it would need to be 

defeated with software or explicitly excluded when writing the equipment contract 

specifications.   

Engine Component Wear 

 Generally speaking, long operation on contingency fuels may cause early 

clogging of fuel filters or early fouling of fuel injector nozzles (U.S. Army, 1981).   
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Photographs in Figure 11 show the effects of running a much higher concentration 

WMO blend in a vintage multifuel engine.  In 2014, a private military vehicle owner was 

rebuilding a 1984 LDT-465 engine and he documented the residue and wear on the 

combustion-related components.  The engine had reportedly been run on a custom WMO 

blend.  In this owner’s case, the WMO was cut 4:1 with gasoline to thin the viscosity to a 

comparable level to diesel fuel, resulting in a 60% WMO, 25% diesel, 15% gasoline 

blend (T. Duncan, email interview, 24 Jan 2017). 

In consideration of this thinning method, Chevron Corporation’s 2007 Diesel 

Fuels Technical Review states “One percent or less of gasoline will lower the flash point 

of a gasoline/diesel fuel blend below the specification minimum for diesel fuel. This will 

not affect the fuel’s engine performance, but it will make the fuel more hazardous to 

handle. Larger amounts of gasoline will lower the viscosity and/or cetane number of the 

blend below the specification minimums for diesel fuel. These changes can degrade 

combustion and increase wear” (Bacha et al., 2007).  But this is strictly in regards to 

mixing with pure diesel fuel, not with added motor oil first.  Adding to this judgement 

call, Cliff Burbrink, a fuel chemist for Cummins agrees that the use of gasoline as a 

thinning agent may be acceptable for a vintage multifuel engine, but adding gasoline to a 

modern diesel system changes make the fuel flammable for a system that was not 

designed to handle it (C. Burbrink, email interview, 3 Feb 2017).  Additionally, this 

research looks at a blend ratio so low that thinning may not be necessary to assist 

combustion characteristics.  The only concern that thinning may help address would be in 

the filtering process to assist in flow through a filtration device, which will be discussed 

later in this chapter.   
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a. 

 

b. 

 

c. 

 

d. 

 

Figure 11 - Effects from WMO Blends on LDT-465 Components (Duncan, 2014) 

 

An example of one of the injectors is shown in shown in Figure 11a, the intake 

and exhaust valves in Figure 11b, and the crown jewel of hypercycle combustion: the 

bottom portion of a spherical combustion chamber in Figure 11c.  All six injectors 

showed the same level of heavy residue but were left unaltered and tested in a pop tester.  

The break pressures ranged from 2,000 to 2,800psi.  After cleaning, the injectors all 
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achieved 3,100psi.  The valves showed normal carbon residue buildup as can also be seen 

on the piston head around the spherical combustion chamber.   

In Figure 11a, the deposits on the exterior of the injector nozzle are plainly seen.  

What is not seen is any possible pitting or scarring on interior of the nozzle.  As injector 

nozzles wear down over time, spray pattern can be affected, which will lead to reduced 

atomization and degraded burn characteristics, which ultimately reduces engine power 

and efficiency.  An example of injector wear results can be seen in Figure 12.   

 
Figure 12 - Fuel Spray Pattern 

  

The main causes of fuel system component wear are low fuel lubricity and 

contaminants in the fuel source.  The contaminants can be of any form, but are typically 

silica and alumina compounds (or dust and dirt) in the fuel.  When introducing WMO to 

the fuel blend, there is inherent risk of introducing wear metals, water, and other 

contaminant particles as well.  The particles entrained in the high pressure fuel essentially 

act as a sandblasting media as it passes through the pumps and injectors.  The most 

damaging particle sizes are in the 2-10 micron range.  They are also the most difficult to 

filter out.  On the older multifuel engines, the tolerances were relatively higher, so this 
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micron range did not affect the fuel system components as much.  But in modern high 

pressure fuel systems, the particles can have a devastating effect. 

As can be seen in Table 3, the 2017 Cummins service bulletin calls out four 

specific heavy metals: vanadium, aluminum, silicon, and sodium. Elevated levels of 

vanadium can cause valve burning.  Aluminum, silicon, and sodium can cause premature 

ring and liner wear, which can lead to excessive oil consumption. Additionally, although 

not called out on the table, the service bulletin mentions that high levels of zinc can cause 

injector spray hole carboning (Cummins, 2017). 

Filtering Methods 

Motor oils of any kind are designed to clean, cool, and lubricate the mating of two 

moving metal surfaces.  Inevitably, the metal surfaces will wear down over time and fine 

metal particles will end up in the oil.  This oil is periodically changed out then discarded.  

The reuse of this discarded waste oil to burn in a heater causes no damage to the heater 

components, but when used as a fuel in modern high pressure direct injection systems in 

diesel engines, the particles can cause wear and eventual catastrophic failure to pumps 

and injector nozzles.  The metal particles act as a blasting media; therefore, they need to 

be filtered out.  Since even the best filters are only about 98% efficient, it is impossible to 

remove all contaminants.  Therefore, the particles only need to be filtered down to a 

small enough size and concentration to pass through the fuel system without causing 

damage.  In most engine applications, the limiting factor is the injector nozzle orifice 

size.  All diesel engines have fuel filters mounted onboard and most have more than one.  

They are combined in series with decreasing size ratings.  Cummins has selected a series 
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of 5- and 2-micron rated filters as the stock equipment on the QSK38 model – therefore, 

2 microns will be the target for success when measuring particle size after cleaning with 

the centrifuge (Cummins, 2017).  Anything larger than 2 microns should be filtered out 

by the engine’s filter system but should not be relied upon for primary dependence.  

Anything smaller than 2 microns is considered successfully filtered.  Without proper 

filtering, deposits may build up on injector nozzles and cause irregular spray patterns as 

can be seen from the photos in Figure 12 (Bacha et al., 2007).  However, Cliff Burbrink 

(Cummins), states that filters have limited effect on nozzle deposits.  Nozzle coking is 

predominately a function of temperature, contaminants in the fuel such as zinc, and the 

presence of detergents in the fuel.  When adding WMO to fuel, the oil additives and 

contaminants can react to other contaminants in the fuel which will lead to chemical 

compounds that coke the nozzles quickly.  This is of greater concern than the effects 

nozzle scoring from particles will have.  Nonetheless, large particles can damage the pilot 

valve seat of the injector which will negatively affect the amount of fuel that gets 

injected, as displayed in Figure 12 (Burbrink, 2017). 

Filter elements, fuel screens in the fuel pump, and fuel inlet connections on 

injectors must be cleaned or changed whenever contaminated. These screens and filters, 

in performing their intended function, become clogged when using a poor or dirty fuel, 

and will need to be changed more often.  The standard fuel filter is the spin-on element. 

These filters contain a porous, pleated, chemically treated paper element that will pass 

fuel freely but trap impurities and sediment. When the element is serviced, it is simply 

detached from the fuel filter head assembly, discarded, and replaced with a new element 

(Cummins, 2017). 
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 Engine wear metals are expected to be found in WMO.  It is beneficial to pre-

filter the WMO before blending with diesel fuel.  This research will determine if it is 

required in a military power generator application.   

 There are several different methods that can be used to clean WMO prior to use as 

an alternative fuel.  They have varying degrees of effectiveness and associated costs.  The 

methods are detailed below in order of increasing complexity. 

 
Status Quo 

Do nothing at all. It costs nothing.  The user simply collects WMO in a container 

and pours it straight into the fuel tank.  The only effort involved is in the collection itself.  

If the history of the WMO is absolutely known, then this option is viable.  However, the 

uncertainty of contamination and hydration is the highest. 

De-watering 

WMO may contain traces of water.  If the user obtains emulsified WMO or a 

batch containing significant amounts of water or antifreeze, it is best to discard of the 

WMO to a proper recycling facility.  However, trace amounts of water can be mitigated.  

Gravity, time, and heat will be the most beneficial.  Whether the user plans to filter the 

batch or not, consideration should be given to de-watering.   The easiest method is to 

simply allow time for gravity to separate oil from water.  Then, pump the oil from the top 

while avoiding the layer of water at the bottom. 

A second method is to pump the batch through an oil/water separator like most 

diesel engine fuel systems incorporate already.  They can be obtained in a spin-on filter 

form and are readily available at automotive parts stores. 
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A third method is to boil the water off.  Heat can be applied to get the batch up to 

the boiling point of water while remaining below the flashpoint of oil.  This can be 

dangerous if the user is not well-versed in petroleum product safety and is more energy 

intensive, but can prove more effective at removing all hydration from the WMO batch. 

Gravity Filter 

With a gravity filter, the user can do one of two common methods, or both.  By 

collecting WMO in a container and allowing the mix to sit over time, many particles and 

water will settle out on their own.  Applying heat can accelerate this process. 

A second method is filter bags.  The bags can be made in different straining sizes.  

Filter bags are typically used more for WVO, when there is a need to filter larger organic 

contaminants like fry batter.  However, bags can be found with ratings from 1000 micron 

down to 1 micron.  This method will require a series of bags in successive sizes to ensure 

the smallest bag is not clogged too quickly. 

Forced Filter 

Most automotive applications pump fuel through inline spin-on cartridge filters.  

A simple platform can be rigged to contain a series of filters, typically from 50 microns 

down to 1 micron.  The smaller range of filtering ability assumes the fuel source is 

considered clean to begin with.  With a filter setup like this, it is wise to use a water 

separator as the first in the series.  The filters will need to be changed every few hundred 

gallons.   
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Centrifuge 

A bowl-type centrifuge is a bowl that spins at approximately 6000 rpm.  The bowl 

has no bottom, just cupped side walls shown in Figure 13.  WMO is introduced through a 

drip valve into the spinning bowl.  The centripetal force due to centrifugal motion causes 

the WMO to be pushed up against the walls of the bowl.  Heavier particles will stay 

against the wall while the good oil rises to the top towards the hole in the middle then 

will drop out into a container below.  This drip process is very slow and the motor turning 

the centrifuge requires constant power for hours.  The process may need to be stopped 

periodically to disassemble the bowl for cleaning.  This involves scraping sludge from the 

bowl.  This sludge will probably be surprising to the user as to how much contamination 

could have been missed by other methods previously mentioned.  A centrifuge process 

can typically filter down to the sub-micron level, but is the most effort and time intensive, 

as well as having the highest setup cost. 

 

 

Figure 13 - Bowl-Type WMO Centrifuge (Chastain, 2010) 
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A spinner-type centrifuge works on the same principle as the bowl-type, but is 

powered by oil pressure supplied from a separate pump.  Pressurized oil is pumped 

through the rotor and the velocity of exiting oil through jet nozzles powers the centrifuge.  

This type of filtering method was chosen because it was already available from a 

previous student’s research.  It is explained in further detail in Chapter III. 

Conclusion 

WMO can be collected and burned as a diesel fuel supplement.  Exhaust 

emissions are of particular concern due to metals contamination and high sulfur contents.  

Engine wear can possibly be accelerated due to use of oil in fuel, but is minimized by 

lowering the blend ratio.  It is feasible and encouraged to recycle WMO into a fuel 

supplement in diesel generators at deployed locations. 
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III. Methodology 

Introduction 

Now that the foundation has been laid for burning WMO in a diesel engine, the 

development of a testing method will be discussed.  The purpose of this chapter is to 

explain methods used to obtain data that will support or refute feasibility of WMO 

burning.  This study will take an extensive look at fuel quality, potential engine damage, 

exhaust emissions risks, and how to clean used oils.  All data will be analyzed then 

summarized in the subsequent chapters. 

Analytes of Concern 

 The researcher initially started developing a list of analytes to test for per findings 

in the literature review, but due to several challenges in the local lab, the decision was 

made to contract out the work to ALS Global, Inc, a tribology services company with 

several labs worldwide.  Because this data acquisition route was chosen, the researcher 

accepted the standard analytes tested in ALS Tribology’s in-service lubricant condition 

monitoring service package.  This included twenty metals, kinematic viscosity, and the 

content of water, coolant, or soot.  The metals included in the test were as follows: Iron 

(Fe), Chromium (Cr), Lead (Pb), Copper (Cu), Tin (Sn), Aluminum (Al), Nickel (Ni), 

Silver (Ag), Titanium (Ti), Vanadium (V), Silicon (Si), Sodium (Na), Potassium (K), 

Magnesium (Mg), Calcium (Ca), Barium (Ba), Phosphorus (P), Zinc (Zn), Molybdenum 

(Mo), and Boron (B).   

Iron, chromium, lead, copper, tin, aluminum, nickel, silver, titanium, and 

vanadium are all wear metals.  These metals indicate wear on particular components in an 
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engine.  The condition of the donor engine has no bearing on this research, but a basic 

understanding of why these metals appear in WMO is necessary.  Silicon, sodium, and 

potassium are considered contaminants in the realm of lubricants.  They can be an 

indicator of both internal and external contamination.  The presence of silicon generally 

indicates dirt while sodium and potassium are present in engine anti-freeze and cooling 

systems which can help detect the presence of coolant in the oil.  Magnesium, calcium, 

barium, phosphorus, zinc, molybdenum, and boron are all additives in oils.  They are 

blended into oils in different forms and quantities to change the characteristics the 

manufacture is trying to achieve (ALS Tribology, 2009).  With that explained, none of 

the implications these metals indicate will be relevant to this research.  Instead, the two 

main concerns presented by the presence of these metals is engine component wear and 

toxic emissions into the environment from combustion.  Knowing the concentrations and 

size of these elements is a crucial step towards understanding the benefits and drawbacks 

of using WMO as a fuel.  

There were a few other irrelevant tests provided by ALS Tribology, namely PQ 

Index, Total Base (or Acid) Number, and fuel content that were not used in this research.   

 In addition to all the analytes listed above, the researcher wanted to test particle 

size and concentration.  Due to the unavailability of testing equipment, the researcher 

relied on a more qualitative approach by viewing a few samples with a scanning electron 

microscope.  This will be discussed more in the electron microscopy section of this 

chapter. 



42 

Sample Collection 

 In real world application, the WMO would be collected directly from the barrels 

and tanks in the maintenance shops.  However, once the waste oils are poured into the 

collection tank, it is impossible to determine the constituency.  Recall the discussion 

about Figure 5 in Chapter II.  To make this research more scientific and to eliminate 

many unknowns, the oils chosen were collected directly from the crankcases of several 

vehicles, skipping the collection tanks.  Wright-Patterson Air Force Base’s 88th Logistics 

Readiness Squadron (88LRS) provided several test samples from their Government-

Owned Vehicle (GOV) fleet.  The samples represent a mix of vehicles to include pickup 

trucks, a commercial bucket truck, and a van.  Samples were obtained from both gas and 

diesel engines.  SAE 5W30 oil was used in the gas engines and SAE 15W40 was used in 

all diesels.  The years of the GOVs ranged from 2003 to 2011. 

 In addition to the five WMO samples provided by 88LRS, the researcher provided 

three instances of previously recorded data from his personal vehicles as well as a new 

sample of ATF from his personal vehicle to be sent in to the lab for testing.  The 

researcher also provided three WMO samples from a collection barrel that contained a 

variety of oils from various vehicle maintenance service activities.  The WMO barrel had 

a built-in cartridge filter mechanism which will be explained in more detail in the 

cartridge filtering section of this chapter.  Seven of the used oil samples were filtered 

with a centrifuge.  Finally, two samples of virgin motor oil and two samples of diesel 

fuels were supplied by 88LRS bringing the total number of samples analyzed for this 

study to twenty-three.  All samples were analyzed by ALS Tribology labs. 
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Samples of the virgin and waste motor oils, ATF, and diesel fuels were collected 

in 1-liter wide mouth high-density polyethylene (HDPE) bottles.  In the case of motor oil, 

two main types were collected: SAE 5W-30 from gasoline engines and SAE 15W-40 

from diesel engines.  Both were conventional mineral-based oils, meaning they were not 

synthetic.  The transmission fluid was DEXMERC, a specific type of ATF.  The two 

diesel fuels collected were No. 2 diesel and B20, which is a blend of 20% biodiesel and 

80% petroleum diesel.  See Table 5 below for further sample collection parameters and 

number of samples collected for each type.  To prevent contamination from sediment, 

water, or antifreeze, the samples were collected directly from the fluid drain ports (i.e. 

crankcase pan drain).  Each sample bottle was catalogued by the donor vehicles’ model 

and usage data.  All samples were assigned a simple letter code or nickname.  More 

vehicle details can be seen in Table 6.  More details can be found in Appendix A. 

Table 5 - Sample Fluid Category Matrix 

Category Type Condition N 

Motor Oil SAE 15W-40 Virgin 
Waste 

Filtered 

1 
6 
3 

SAE 5W-30 Virgin 
Waste 

Filtered 

1 
2 
2 

Various from 
WMO barrel 

Waste 
Filtered 

2 
3 

Fuel No. 2 diesel Virgin 1 
 B20 biodiesel Virgin 1 

Transmission 
Fluid 

DEXMERC Waste 1 
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Table 6 - WMO Sample Source Details 

 

Sample Preparation 

 Determining what contaminants are in the dirty oil compared to what can be 

removed by filtering is key to decision-making when it comes to trusting available 

methods of mitigating contaminants.  The two methods used to filter oil in this research, a 

spinner-type centrifuge and a more traditional setup of cartridges, were chosen due to 

availability and practicality as needed in a contingency environment.  The two methods 

are further explained below. 

Unit  
Name Other info 

Unit  
Make Name 

Unit  
Model 

Year of 
Mfg 

Compartment 
Make Name 

Compartment  
Model Name 

Compartment  
Type Fluid Grade 

Deuce Used Kaiser-Jeep M35A2 1970 Continental LDT-465 Diesel Engine SAE 15W40 
Chevy Used Chevrolet 2500HD 2005 Duramax LLY Diesel Engine SAE 15W40 

Bobber Used Kaiser-Jeep M35A2 1971 White LDT-465 Diesel Engine unknown 
A Used Chevrolet 3500 2003 Vortec 6000 Gas Engine SAE 5W30 
B Filtered Chevrolet 3500 2003 Vortec 6000 Gas Engine SAE 5W30 
C Virgin, Oil -- -- --  -- --  -- SAE 5W30 
D Virgin, Oil -- --  -- -- -- --  SAE 15W40 
E Used Chevrolet 3500HD 2011 Duramax LML Diesel Engine SAE 15W40 
F Filtered Chevrolet 3500HD 2011 Duramax LML Diesel Engine SAE 15W40 
G Used International Bucket Truck 2005 Navistar DT466 Diesel Engine SAE 15W40 
H Filtered International Bucket Truck 2005 Navistar DT466 Diesel Engine SAE 15W40 
I Used Ford F350 2012 Ford Powerstroke Diesel Engine SAE 15W40 
J Filtered Ford F350 2012 Ford Powerstroke Diesel Engine SAE 15W40 
L Virgin, Diesel  -- -- -- -- --  -- No. 2 
M Virgin, Biodiesel  -- -- -- --  -- --  B20 
N Used Chevrolet 3500 Van 2003 Vortec 6000 Gas Engine SAE 5W30 
O Filtered Chevrolet 3500 Van 2003 Vortec 6000 Gas Engine SAE 5W30 
P Used various various various WMO Barrel Top various various 
Q Filtered various various various WMO Barrel Top various various 
R Used various various various WMO Barrel Bottom various various 
S Filtered various various various WMO Barrel Bottom various various 
T Filtered various various various WMO Barrel Bottom various various 
U Used ATF Chevrolet 2500HD 2005 Suncoast GMAX 5 Auto Trans DEX/MERC 

*Items in blue were analyzed separately from 2011 – 2016 by ALS Tribology at the researcher’s personal request. 
*Items in red were analyzed in one batch by ALS Tribology in December 2016. 
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Centrifuge 

After the oil samples were taken to AFIT’s laboratory, they were prepared for 

testing.  Before filtering the oil, 50mL samples were drawn from each container with a 

large pipet and placed in centrifuge vials, marked, then set aside for later testing.  Virgin 

oil containers were then re-labeled as “flush” oil and were to be used only as a centrifuge 

system flush before filtering a new sample of different weight.  The samples can be seen 

below in Figure 14.  All WMO samples were individually cycled through a spinner-type 

centrifuge on a continuous loop for ten minutes to remove particles.  The lab setup shown 

below in Figure 15 was crafted by the researcher and AFIT’s machine shop personnel 

using parts scavenged off a Waste Vegetable Oil (WVO) centrifuge rig purchased from 

Fryer-to-Fuel, LLC in 2008 for another student, Capt Harvey Gaber’s research in 

recycling fryer grease on base to use in diesel vehicles (Gaber, 2009).   

Parts scavenged from the WVO rig included a ½ hp motor, carbonator gear pump, 

dial pressure gauge, and spinner-type centrifuge with base mount.  The rig had been in 

storage at the base recycling center for six years so the pump, lines, and filters were 

completely gummed up with rotten congealed fryer grease.  The researcher deep cleaned 

the pump components with brake cleaner and mineral spirits.  It was decided that the 

centrifuge was not salvageable, so a new replacement was purchased from Fryer-to-Fuel, 

LLC. Also, new hydraulic hose and fittings were procured locally from a hydraulic 

supply store.  The rig components were given to the AFIT machine shop for final 

assembly where a stand was made from 80/20 T-slotted extruded aluminum to fasten the 

pump and centrifuge to a sturdy surface while allowing a container to fit underneath. 
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Figure 14 - WMO Sample 50mL Vials 

 

 
Figure 15 - WMO Centrifuge Rig 

 

This particular model of centrifuge is a spinner-type.  It is not driven directly by a 

motor, but instead is powered by the force of the pumped oil itself.  A sample of virgin 

oil was used first to flush the system since there was a capacity which could not be fully 

drained or cleaned before running a new sample.  The flush oil used in each case was the 

same weight as the WMO to be filtered.  A container was placed below the centrifuge, as 
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can be seen above in Figure 15.  The suction hose was pushed to the bottom of the 

container and a metal funnel placed between the container and centrifuge discharge port.  

When the pump was powered on, the oil traveled to the pressure gauge, which registered 

80psi.  Then the oil travelled onward to the centrifuge.  It was pumped into a channel cut 

in the base of the centrifuge and through a hollow spindle in the rotor.  This is detailed in 

Figure 16.  The rotor then fills with oil and exits through two opposing angled orifices at 

the bottom of the rotor.  This begins to turn the rotor using the principle of jet propulsion.  

Within a couple seconds, the rotor achieves full speed of about 8000 rpm (Fryer-to-Fuel, 

2016).  As the rotor spins, centrifugal force separates the fluid by mass.  The heavier 

particles get pushed to the walls of the rotor and the lighter oil can exit through the center 

downward towards the exit jets at the bottom.  Eventually, the rotor will need to be 

cleaned after about 150-200 gallons of usage, which was not reached during the period of 

this research.  Approximately six gallons of WMO was filtered during this experiment.  

After all samples were finished with filtering, the centrifuge was disassembled for 

cleaning.  Particles collected on the wall of the rotor as described previously can be seen 

in Figure 17.  This residual was explored under a microscope as described later. 
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Figure 16 - Cutaway Model of Spinner Type Centrifuge (Autowin, 2011) 

 

Fryer-to-Fuel, LLC recommends heating the WMO prior to filtering, because it helps 

to lower the viscosity which eases its passage through the centrifuge and allows easier 

particle separation.  As a secondary method, they also recommend if not heating the 

WMO, then diluting with approximately 20% diesel can help to cut the viscosity.  The 

heating procedure was ignored because on a large-scale filtering process, electricity usage 

for heating would trump the savings from recycling the WMO for its energy content.   

Cutting with diesel was also ignored to prevent cross-contamination without knowing 

the properties of the diesel fuel also undergoing analysis.  While the researcher does not 

disagree with the effectiveness of heating, cutting with diesel is recommended for any 

follow-up research moving forward from what was found here.  Furthermore, while there 

was no analysis of power consumption and heater purchase cost, it was determined that 

heating is likely too expensive to justify the small benefit returned.  However, while 
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running the centrifuge, the researcher did make a note that the temperature of the filtered 

WMO samples upon completion of a ten-minute run were noticeably hot from fluid 

friction through the pump and centrifuge. 

A spinner-type centrifuge is capable of filtering down to one tenth of a micron but is 

not intended to remove water or antifreeze.  In this study, water removal was not of 

particular concern because the researcher was highly confident the samples provided by 

88LRS had not been introduced to water at any point.  However, this confidence is key 

when collecting WMO in bulk.  If there is any chance that a WMO barrel has been 

exposed to water or antifreeze, it is best to dispose of the barrel in traditional methods 

and not make an attempt to salvage it.  After the samples were filtered, they were all 

compared to their virgin counterparts to assess filter efficiency.   

 
Figure 17 - Residual Particulate Matter in Centrifuge Rotor Cap 
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Cartridge 

When using the cartridge method, WMO sample T (more details in Appendix A) 

was pumped directly from a collection barrel through a four-filter series consisting of a 

water separator first, then  through paper canister- and metal spin-on-cartridges mounted 

to a panel above the collection barrel, shown in Figure 18.  The paper filters, Baldwin 

PF906 (primary, water separator) and PF902 (secondary), as seen in Figure 19, all had a 

nominal rating of 10-microns. Whereas the final stage metal spin-on filter had a nominal 

rating of 2-microns.  The results are shown in chapter IV. 

 

Figure 18 - WMO Collection Barrel with Cartridge Filter Rig 
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Figure 19 - Baldwin Fuel/Water Separator and Replacement Cartridge Filters 

 

 
Figure 20 - Waste Drained from Clogged Fuel Filter 
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Figure 21 - Dirty Fuel/Water Separator Cartridge 

 
Figure 22 - Resulting Clean WMO from Cartridge Filter Rig 
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Preparation for Analysis 

 After filtration, the samples were packaged in a kit received in the mail from ALS 

Tribology.  Each sample was placed into 100mL bottles and catalogued with detailed 

information about each donor source (i.e. vehicle engine type, mileage, age, etc).  Then 

the sample bottles were packaged into cardboard boxes and mailed to the tribology lab in 

Cleveland, Ohio.  The categories of this data associated with each sample, including the 

results returned from the lab can be seen in Appendix A.  

 

Analytical Methods  

Metals Analysis 

Metals were determined by ASTM Method 5185.  The method covers the 

determination of additive elements, wear metals, and contaminants in used and virgin 

lubricating oils and base oils by Inductively Coupled Plasma Atomic Emission 

Spectrometry (ICP-AES). 

  

Kinematic Viscosity 

Kinematic viscosity is the ratio of the dynamic viscosity to the density of a 

material at the same temperature and pressure.  Dynamic viscosity is a measure of a 

fluid’s resistance to flow.  Results can indicate physical changes or contamination by 

other fluids.  Kinematic viscosity is measured in mm2/s, otherwise known as centiStokes, 

or cSt.   

ASTM Method D445 defines the standard test method used (ASTM International, 

2016).  It summarizes the method as measuring the time for a fixed volume of liquid to 
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flow under gravity through the capillary of a calibrated viscometer dipped in a closely 

controlled temperature bath to within ±0.02°C as can be seen in Figure 23.  Virgin motor 

oils are measured at both 40°C to represent typical engine startup and 100°C to represent 

typical engine operating temperatures.  Because the tribology lab is setup to analyze 

properties of used motor oil as they were used as lubricants and not as fuels, the used oils 

were only tested at 100°C.  When WMO is blended and stored with diesel fuel, the 40°C 

viscosity will matter more.  Unfortunately, the 40°C viscosity was not determined except 

for two virgin motor oils (samples C and D).  A workaround is discussed in chapter IV. 

 
Figure 23 - Viscometer in Constant Temperature Bath (ASTM International, 2016) 
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Electron Microscopy 

Due to the lack of particle counting equipment, a crude method was developed in 

the AFIT laboratory to make use of a scanning electron microscope.  The researcher used 

the samples of 15W40 oil shown previously in Figure 24 which came from the 2011 

Chevrolet 3500HD truck.  In other words, they were sample codes D, E, and F.  

Additionally, a sample of large particles from the inner wall of the centrifuge rotor were 

scraped off with a small spatula and diluted with hexane in a test tube.  All four hexane-

diluted samples were left to settle overnight.   

 

Figure 24 - Virgin, Filtered, and Used 15W40 Samples Diluted with Hexane 

 

The following day, the samples were placed into an evaporator to off the volatile 

gasses to obtain a dry sample of particulates.  After a few mildly successful attempts, a 

decision was made to attempt a cruder method of drawing the liquid volatiles off the 

sample by utilizing a filter media in a vacuum flask, shown in Figure 25.  A major 

limitation here was the unavailability of preferred polycarbonate filters, so the researcher 

made due with glass microfiber filter paper, grade 691.  The filters were designed for 

water chemistry use, but they achieved a decent performance.  The filters were rated for 



56 

1.5-micron particle retention.  Capturing the target range of 2-10-micron particles showed 

usable results. 

 
Figure 25 - Flask and Vacuum Pump for Preparing Microscopy Samples 

 

Once the particles were trapped on the filter media and dried, as shown in Figure 

26, the paper was removed and sections were trimmed to fit on studs with double sided 

carbon tape then were ready to be placed on the microscope’s viewing stage, as shown in 

Figure 27.  The scanning electron microscope (SEM) was a Zeiss Evo model.  Resulting 

images are shown and discussed in Chapter IV. 
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Figure 26 - Resulting Filter Media with Centrifuge Rotor Residual Particles 

 

 
Figure 27 - Filter Media Sections Prepared with Carbon Tape on Microscope Studs 

 

Summary 

This chapter summarized the methodology used to determine, collect, and prepare 

samples of WMO for analysis.  Procedures for filtering, testing fuel quality 

characteristics, and qualitatively analyzing particles were explained in detail.  The results 

of these tests are shown and discussed in the next chapter.  
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 IV. Results and Analysis 

Overview of Results 

 The results from the tests mentioned in Chapter III were received from ALS 

Tribology and logged in a spreadsheet.  The researcher was unable to carry out any 

inferential statistics due to the many differences in sample characteristics and small 

sample size.  However, there was still an opportunity for descriptive statistics to 

investigate filtering effectiveness and to give ranges of possible contaminants as they 

apply to air pollution. 

 Overall, filtering with the centrifuge showed marginal results for how well it 

filtered out metals and in some cases, it surprisingly added metals to oil.  In a couple 

cases where this effect was minor, it seemed easily attributable to testing error.  In other 

cases, the cause was unknown and results were unexpected.  Contamination may have not 

been fully flushed from the filtering system beforehand.  A detailed look at filtering 

effectiveness is discussed later in the metals section.  In addition, the differences between 

filtering methods is discussed next.   

Filtering Method Comparison 

To compare filtering methods, we can analyze are runs R, S and T.  They 

highlight the difference between the centrifuge and the more traditional paper cartridge 

filters combined with a water separator.  R was obtained from the bottom portion of a 

WMO collection barrel by using a pump and suction hose.  This dirty sample was run 

through the centrifuge exactly like the other filtered samples.  This gave us sample S.  

Furthermore, sample T was obtained by running the WMO through a four-filter series 
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consisting of a water separator and paper and metal cartridges attached to the collection 

barrel which can be seen in Figure 18 in Chapter III. 

 

Table 7 - Filtering Method Comparison for WMO Collection Barrel Sample 

Name Fluid Description Metals (ppm) Contaminants (ppm) 
 Condition Method Fe Cr Pb Cu Sn Al Ni Ag Ti V Si Na K 

R Used ---- 89 4 20 33 2 11 1 <1 <1 <1 28 55 8 

S Filtered Centrifuge 88 4 19 32 2 11 1 <1 <1 <1 28 56 9 

T Filtered Cartridge 111 4 23 48 3 13 1 <1 <1 <1 32 66 10 

 

 In every single metal species, the cartridge filter sample actually added more 

contaminants to the sample or remained the same instead of removing anything.  The 

limitation to this experiment was that only one sample was gathered from the cartridge 

filter rig.  It was known to the researcher that the filters in the rig were not new.  They 

had previously been used to filter a few hundred gallons of WMO and diesel with 

sediment, so the filters were already saturated with metals.  While realizing this was not a 

good assessment of the filter’s potential effectiveness, the researcher did not waste an 

opportunity to send more samples to the tribology lab.  Further research could be 

conducted for cartridge filters specifically, but it was not the intent of this study.  It is 

seen that the centrifuge exhibits better cleaning qualities than the cartridge filters.  Most 

cartridge type fuel filters are capable of filtering down to two microns while centrifuges 

are advertised by the manufacturer that they can achieve filtering effectiveness down to 

less than one micron (Fryer-to-Fuel, 2016).  
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Particulate Matter by Microscopy 

 Without a proper sample preparation method and counting software, the 

researcher was unable to obtain concentration analyses, so a qualitative comparison 

approach was carried out using a Scanning Electron Microscope (SEM).   

The particles found were suspected to be metal shavings, soot, carbon, and other 

engine related substances.  It was impossible to distinguish what exactly each particle 

consisted of, but the particle size and concentration was more important anyway when 

considering wear on engine components, especially in the 2- to 10-micron range. 

When viewing samples D, E, F, and the centrifuge rotor cap sludge, it was plainly 

seen there was an absence of particles in the virgin oil, sample D.  The filter media, 

shown in Figure 28, contained particles ranging in size from 5- to 150-micron, but the 

concentration was scarce.  The used motor oil, sample E, shown in Figure 29, contained 

particles ranging from 2- to 100-micron at a relatively high concentration.  The 

centrifuge-filtered used oil, sample F, shown in Figure 30, contained particles ranging 

from 2- to 200-micron but had a visibly reduced concentration over the whole filter 

media as compared to sample E.  The fourth sample viewed under the SEM was the 

centrifuge rotor cap sludge, shown in Figure 31, which had massive particles ranging 

from 2- to 2,000-micron with a very high concentration over the entire filter media.  

Obviously, this will not be introduced to any fuel blend.  This concentration and size 

distribution was shown to visualize the types of contamination filtered out by the 

centrifuge.  These particles are what need to be prevented from entering an engine’s fuel 

system. 
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a. Fairly clean in most 

sectors of the filter 

media 

 

b. This sector is 

representative of the 

whole filter media.  

Very clean.  No sign 

of small particles. 

 

c. Small particles 

were rare and difficult 

to locate in this 

sample. 

 

Figure 28 - Virgin 15W40 Motor Oil Viewed Under SEM 
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a. Possible metal shaving 

 

b. Possible metal shaving 

 

c. Edges were burning from 

electron beam 

Figure 29 - Used 15W40 Motor Oil Viewed Under SEM 
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a. Void of larger particles 

in this sector of the filter 

media 

 

 

 

b. Shows scattering of 

medium to large particles 

throughout filter media 

 

c. Electron beam was 

burning edges of particle, 

possibly soot from carbon. 

Figure 30 - Filtered 15W40 Motor Oil Viewed Under SEM 
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a. Very large particle 

2mm long by 1mm 

wide. 

 

b. Same particle from 

previous image 

zoomed in to show 

detail. 

 

c. 20-micron particle 

representative of entire 

filter media. 

Figure 31 - Centrifuge Rotor Cap Residual Particulate Matter Viewed Under SEM 
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Kinematic Viscosity 

 Figure 32 shows results from kinematic viscosity tests carried out by ALS 

Tribology at 100°C.  The virgin oils were also tested for control.  The virgin SAE 5W30 

(sample C) was 63.1 cSt at 40°C and 10.4 cSt at 100°C.  The virgin SAE 15W40 (sample 

D) was 110.4 cSt at 40°C and 15.1 cSt at 100°C.  For comparison, two virgin diesel fuels 

were also tested, but only at 100°C.  Diesel #2 (sample L) was 1 cSt and biodiesel 

(sample M) was 1.7 cSt. 

   

Figure 32 -Kinematic Viscosity of Paired WMO Samples at 100°C 

 

Cummins specifies the viscosity of contingency diesel fuel should be 1.3-13.1 cSt at 

40ºC (Cummins, 2017).  Since the used and filtered oils were only tested at 100°C to 

represent the temperature of a running engine, viscosities were not very representative of 

ambient temperature that a diesel fuel blend would be stored at.  To approximate a more 

useful comparison to diesel fuel, the oil viscosities can be estimated using a logarithmic 
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regression to approximate a 40°C viscosity, but all published regression models are 

disputed and it is simpler to read a published viscosity vs. temperature curve, in this case 

for SAE 15W-40 from Viscopedia (Anton Paar GmbH, 2017).  The filtered motor oil 

viscosity can be estimated between 90-120 centiStokes at 40°C by referencing a chart 

compiled by Viscopedia.  Diesel fuel #2 was also provided by Viscopedia as 2.98 cSt 

measured at 40°C. 

The following mixture equation can be used to predict a final blend viscosity: 

= + 1 − ,                         (1) 

   where 

    vblend = kinematic viscosity of resultant fuel blend, cSt 

    vWMO = kinematic viscosity of WMO, cSt 

    vdiesel = kinematic viscosity of diesel fuel, cSt  

B = blend ratio of WMO to diesel fuel 

 

If using a range of 90-120 cSt for oil and 2.98 cSt for diesel, both at 40°C, and a 

5% WMO to diesel fuel blend, then the expected range of blended fuel viscosities should 

be 7.3-8.8 cSt at 40°C, above the range of tolerances for required diesel fuel, but within 

tolerances of the contingency diesel fuel specifications.  
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Metals 

 The spectrometry results from ALS Tribology showed metals concentrations for 

twenty metal species in each fluid sample.  In many cases, filtering was only slightly 

effective at removing elemental metals if effective at all.  Figure 33 over the next few 

pages shows the filter’s effectiveness at mitigating metals concentrations.  Each graph 

shows paired samples of used and filtered oils from the different donor vehicles.  Note 

the difference in y-axis scales.  Some elements had much larger concentrations than 

others.  The difference between the first two lines in each graph shows the amount of 

material removed by filtration.  In some cases, material was added by the filter.  The next 

two lines are the average concentration of all samples for that species.  In most species, 

the distinction between the average used concentration and the average filtered 

concentration is not distinguishable.  In almost every metal species, sample pair R-T 

showed an increase.  This sample pair was from the cartridge filter rig. 
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c.

 

d.

 

e. 

 

f. 

 

g. 

 

h. 
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i. 

 

j. 

 

k. 

 

l. 

 

m.

 

n. 
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s.

 

t.

 

Figure 33 - Filtering Effectiveness on Metal Species 

 

 Focusing on only the samples filtered by the centrifuge, there were seven used 

samples that produced seven additional filtered samples.  When the species 

concentrations of these fourteen samples are juxtaposed and arranged in descending order 

of concentration magnitudes, as shown in the next three figures, it can be seen that the 

amount removed by filtering is statistically insignificant.  Upon closer inspection, there 

was no consistent removal rate, and in some cases the filtering method actually added 

contaminants instead of removing them. 
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Figure 34 - Metals Filtering Comparison, Large Concentrations 

 
Figure 35 - Metals Filtering Comparison, Medium Concentrations 

Metal Species 
      Fe                   B                  Mo                 Cu                  Si                   Pb                  Na 

Metal Species 
             Ca                                   Zn                                   P                                   Mg 
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Figure 36 - Metals Filtering Comparison, Small Concentrations 

 

There were eight species showing negative removal rates, meaning that material was 

added into the oil by the filtering process.  In the case of the species with very low 

concentrations, this may have been an insignificant change at such a low concentration.  

For example, potassium (K) had a mean concentration of 3.3±3.1ppm in the seven dirty 

samples which were later filtered.  This rose to 4.5±3.8ppm over seven filtered samples.  

This is such a small difference, but the percentage jump is relative to its magnitude.   

 Finally, to show if sodium, vanadium, aluminum, and silicon meet the required 

specifications for contingency diesel fuel prescribed in Table 3, the researcher took the 

worst-case metals concentration for each metal and blended it to 5% with diesel fuel.  All 

diesel fuel samples contained <1ppm of each of the four metals.  <1ppm is the reporting 

identifier for anything below the detection limits of the instrument.  For math purposes, 

Metal Species 
          Al                            K                            Cr                           Sn                           Ni 
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this was considered 1ppm.  Therefore, using the maximum concentration of sodium 

found, 66ppm, Equation 1 was adapted to determine a blended concentration of 4.3ppm.  

The remaining blended concentrations were found as follows: 1.0ppm vanadium, 1.6ppm 

aluminum, and 3.4ppm silicon.  Aluminum and silicon are both slightly above their 

maximum allowable thresholds, but keep in mind that these were worst case metals 

concentrations. 

Water Content 

Of twenty-three total samples, eighteen were free of water contamination, 

annotated as the lower detection limit of <0.05% on the tribology report.  The remaining 

five samples, all obtained from the WMO collection barrel, contained trace amounts of 

water.  The source of the water could have been from a maintenance issue with a donor 

vehicle’s engine cooling system, such as a head gasket failure.  If that was the case, 

tribology lab would also have detected coolant in the oil.  The lab did test for coolant and 

all samples came back with negative results.  Therefore, a better theory for the presence 

of water is that the WMO collection barrel had not been vented properly, trapping 

ambient air inside which could have condensed with temperature changes over time.  The 

humidity of the air inside the barrel simply condensed droplets of water into the oil.  This 

is one reason why collection barrels and tanks should be vented.  Since petroleum 

products have a lower specific gravity than water and rise to the top of an aqueous 

solution, it would be expected that more water would be found in the bottom portion of 

the barrel.  This was not the case.  In fact, the lightest concentration of water was found 

in sample R, which was pulled from the bottom of the barrel.  Sample R remained 
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unfiltered.  Another profound observation was with sample T, filtered with the forced 

cartridge method.  This cartridge filter rig even included a water separator but did not 

seem to influence the water removal percentage.  The centrifuge, however, which is not 

intended to de-water, did have a slight effect.  Results of samples P, Q, R, S, and T from 

the WMO collection barrel can be seen in Table 8.   

A major drawback to having water in these samples was the inability to carry out 

viscosity analyses.  However, Cummins has declared in its contingency fuel 

specifications that absolutely nothing over 0.5% should be used.  The preference is to 

keep water out completely.  With any level of filtering in the test samples Q, S, and T, 

<0.5% was achieved, so the fuel is still considered safe by contingency standards.  

Keeping in mind, this level is targeted for undiluted diesel fuel, whereas a 5%WMO 

blend would render this water concentration to 0.000725% overall water in the 

generator’s fuel supply, which is much less concerning and still below the required diesel 

fuel specification maximum of 0.05% volume-percent. 

Table 8 - Water Contamination and Filter Effectiveness in WMO Barrel 

Name Fluid Description Contaminants 
Filter 

Effectiveness 
 Condition Barrel Strata Filter Method Coolant Water (%) Delta (±%) 

P Used Top ---- No 0.52  

Q Filtered Top Centrifuge No 0.40 
-23% 
removed water 

R Used Bottom ---- No 0.34  

S Filtered Bottom Centrifuge No 0.41 
+21% 
added water 

T Filtered Bottom Cartridge No 0.35 
+3% 
added water 
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Descriptive Statistics 

 Looking for reasons of filter effectiveness, the researcher tried a scatterplot of 

mean filter effectiveness versus the molecular weight of each element.  Figure 37 shows 

this regression.  As can be plainly seen, there is no correlation between filter 

effectiveness and the molecular weight of each element.  Considering that the elements 

likely have formed into different compounds with different total molecular weights, this 

brief look tells the researcher that filter effectiveness is not linked to the elemental 

molecular weight of metals.  Furthermore, without knowing which compounds these 

elements are formed into makes it impossible to further analyze filter effectiveness with 

this approach.  The results from gas-chromatography (GC) might have shed more light on 

the chemical compounds present in the oil, but the level of fidelity in the GC analysis was 

so low, we must abandon this approach and accept the magnitudes of metals 

concentrations at face value. 

 
Figure 37 - Scatterplot of Molecular Weight vs Filter Effectiveness   

 

Further descriptive statistics were carried out and place in Appendix B. 
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Chemical Characteristics 

 Gas-Chromatography (GC) results were poorly distinguishable due to high 

background noise.  The instrument is designed with a resolution of parts per billion, 

whereas the samples in question were so dirty that they contained analytes in the parts per 

thousand.  For perspective, average crude oil coming off a cracking tower has hundreds 

of thousands of components, so the background noise in a chromatograph such as this is 

understandable.   

Qualitatively speaking, the chromatograph does show a distinct difference 

between a sample of virgin, used, and filtered oil from one vehicle.  In this case, it was 

the 15W40 oil from the 2011 Chevrolet 3500HD Duramax: samples D, E, and F. The 

chromatograph is shown in Figure 38; the spike at 5 minutes represents the solvent, 

hexane. 

  

 
Figure 38 - Chromatograph of Chemical Differences in Motor Oil 

 

 

E - Used 

D - Virgin 

F - Filtered 
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 Focusing on the latter half of the test, after 15 minutes, it is apparent the 

“cleanest” of the samples is the virgin oil which is represented by the bottom curve in the 

chromatograph, seen in Figure 39.  The top curve, representing the used oil, has the 

highest abundance of compounds throughout, meaning it is the “dirtiest”.  The filtered oil 

curve follows a nearly identical shape curve and has similar peaks as the used oil curve 

above it, but the intensities of the peaks are reduced. This clearly shows that the 

centrifuge was effective in filtering out compounds.  Had this been quantifiable, the 

previous discussion on molecular weight versus filter effectiveness could have been 

pursued further.  There was no case where the filtered oil showed a higher abundance of 

compounds than the used oil sample.  This analysis should not be compared to the 

previous analyses in this chapter for concentration of other contaminants such as metals.  

Chromatography looks at chemical characteristics only whereas spectrometry can show 

elemental metals. 

 Examining the virgin oil curve, it is evident that, for the most part, it has the same 

shape as the two curves above it.  Aside from reduced intensity after 13 minutes, there is 

a slight phase shift of about 0.05 minutes, or 3 seconds.  At first glance, a chemist should 

say this is a completely different substance, but since the shape fits so well except for the 

shift, it could be presumed that the lighter weight of the clean virgin oil allowed it to 

travel through the column faster than the dirty oils that followed it.  In addition to the 

weight-affected cleanliness of the oil, it was also impossible for the researcher to 

determine if the virgin motor oil was exactly the same manufacturer and brand as the 

used sample taken from the truck’s crankcase.  Since government contracts sometimes 

rotate through different oil distributors for multiple reasons, 88LRS could not confirm 
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what oil it had used for the vehicle in question.  Therefore, a bold but necessary 

assumption was made that the collected virgin motor oil was of the same manufacturer 

and brand as was used in the truck before the dirty sample was collected at the 

maintenance interval.  

 

 
Figure 39 - Chromatograph Rescaled to Highlight Differences 

 

 When looking closer using the mass spectrometry National Institute of Standards 

and Technology (NIST) Library within Mass Hunter software, many compounds were 

associated with the major peaks.  It was impossible to determine which characteristics 

defined what the compounds could have been.  When the peaks were subtracted, other 

heavy aliphatic compounds were seen coming through.  However, several potential peak 

compounds were as top contenders.  Table 9 below shows possible compounds at 

selected major peaks could have represented similar characteristics.  These results should 

be taken very critically because there so much background noise in this test that it was 

impossible to determine any compounds with even a moderate level of confidence.   

 

E - Used 

D - Virgin 

F - Filtered 
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Table 9 - Possible Compounds Determined by Mass-Spectrometry 

Peak Time (min) Compound 
17.33 tetrapentacontane 
17.45 hexadecenoic acid 
18.46 tetrapentacontane 
18.74 hexadecanoic acid, methyl ester 
19.52 hexadecenoic acid 
20.49 methyl ester 
20.55 hexadecenoic acid 

 

Air Pollution Considerations  

Gaussian Model 

To determine the environmental impact that WMO contributes to the air from 

burning toxic heavy metals, we can apply the metals concentrations in the liquid oil to a 

Gaussian dispersion model (Cooper & Alley, 2011; Masters & Ela, 2008).  This will give 

us a metals concentration in air so we can compare to published Permissible Exposure 

Levels (PEL) from agencies such as OSHA, ACGIH, and WEEL. 

= exp − − + −      (2) 

where 

 C = steady-state concentration at a point (x,y,z), mg/m3 

 Q = emissions rate, mg/s 

 σy,σz = horizontal and vertical spread parameters, m 

   (these are functions of distance, x, and atmospheric stability) 

 u = average wind speed 

 y = horizontal distance from plume centerline, m 

 z = vertical distance from ground level, m 

 H = effective stack height, m 

                     (H=h+Δh, where h=physical stack height and Δh = plume rise) 
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 We must make some assumptions for this to be feasible.  First, the engine is 

running at steady state.  Second, the metals pass through in complete combustion, 

ignoring effects of blowby.  Third, the engine has a straight pipe exhaust so we can 

ignore SCR, DPF, and EGR effects.  Fourth, we will assume motor oil has the same 

density as diesel fuel.  This is outright false, but at such a low blend rate, the effects of 

density are negligible.  A simple dilution model can be embedded in the blend ratio, 

adapted from Equation 1 used in the kinematic viscosity analysis section, but the 

densities of the WMO samples have a wide range.  The fifth assumption we need to make 

is that the exhaust is at ground level and there are no obstructions between the exhaust 

and observer.  Finally, for weather conditions, we will choose average weather conditions 

with a wind speed of 2m/s on an unstable day (“stability condition B” in  Air Pollution 

Control textbook; Table 20.1 in Appendix C) (Cooper & Alley, 2011). 

 With these bold assumptions, Equation 2 simplifies to give us a timed average 

concentration of our metal species so we can compare to PELs. 

= ,                                                   (3) 

We are given a metals concentration, in ppm, from the tribology lab results.  To 

model a worst-case scenario, the highest concentration was chosen from each species, but 

it was divided between used and filtered oils to see if there is a noticeable difference.  We 

also know the density of diesel fuel, 0.832 kg/L and can choose an oil-to-fuel blend ratio.  

In this study, we were given a 5% maximum threshold by Cummins, but we can choose 

anything between 0-100% to see titration effects on the concentrations as compared to the 
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PEL.  Finally, we know the fuel consumption rate of the engine from the Cummins 

QSK38 specifications shown below in Table 10 (Cummins, 2009). 

Table 10 - Cummins QSK38 Fuel Consumption @1800RPM (60Hz) (Cummins, 2009) 

% kWm BHP L/hr US gal/hr 
Standby Power 
100 1279 1715 315 83.3 
Prime Power 
100 1063 1425 262 69.3 
75 797 1069 202 53.4 
50 532 713 153 40.3 
25 265 356 90 23.7 
Continuous Power 
100 891 1195 223 59.0 

 

Sample Calculation 

 We start by choosing the worst-case scenario.  At 100% standby power, we use 

315 L/hr.  Multiplying this by the density of diesel fuel, the engine is burning 263 kg/hr. 

Then we choose the highest concentration of iron in the tested WMO samples, 

214 mg/kg, then blend it with diesel fuel to 5%, giving us a concentration of iron in fuel 

of 10.7 mg/kg.  Next, to find the emission rate of the contaminated fuel, Q, we multiply 

the metal concentration by the flow rate of fuel and convert hours to seconds, giving us a 

metal emission rate of 0.78 mg/s. 

 To calculate the horizontal and vertical spread parameters, we choose from a few 

options on a stability classification table and a subsequent table of curve-fit constants in 

Air Pollution Control (Cooper & Alley, 2011) as can be seen in Appendix C. 

= = 156 .  

= + = 106.6 . + 3.3 

 where x is distance from source, km 
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 Assuming the generator operator is standing 2 meters away, or 0.002km, the 

parameters reduce to σy=0.6m and σz=3.4m. 

 Now we have all the parameters to complete the Gaussian model and we calculate 

an average concentration, C, of 0.061 mg/m3 at the operator.  Comparing that to the 

OSHA 8-hour average PEL table, the iron oxide value is limited at 10 mg/m3.  According 

to this, we can burn WMO at a 5% without exceeding that level.  Refer to Table 11 for 

the remainder of the results.  The same results are better visualized in Figures 40 and 41. 

Exposure Levels Comparison 

 The researcher created an Excel spreadsheet to calculate the levels of all metals in 

oil.  The spreadsheet was separated into two tabs, one for only the filtered oil samples and 

one for dirty unfiltered samples to see the magnitude of difference between each. There 

was only a slight difference when the oil-to-fuel blend was turned up to 100%.  The 

researcher could postulate that filtering is unnecessary to mitigate emissions hazards from 

burning while also assuming the emissions control devices on an engine will capture 

most of the harmful metals.  However, there are other reasons why filtering should 

remain in place, namely to prevent damage to the engine’s fuel system from the abrasion 

of these metal particles. 
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Table 11 - Comparison of Results to Permissible Exposure Levels 

Compare to OSHA Table Z-1 (8-hr PEL) Metals Emission (5% Fuel Blend) 

 Substance PEL mg/m3 Dirty WMO Filtered WMO 
Iron oxide 10 0.061 0.055 

Chromium metal and insoluble salts 1 0.004 0.001 

Chromium (II) compounds 0.5   

Chromium (III) compounds 0.5   

Lead inorganic (see 1910.1025) 0.05 0.025 0.017 

Tetraethyl lead 0.075   

Tetramethyl lead 0.075   

Copper fume 0.1 0.083 0.072 

Copper dusts and mists 1   

Tin, as inorganic compounds (except oxides) 2 0.003 0.001 

Tin, as organic compounds 0.1   

Aluminum metal - total dust 15 0.009 0.004 

Aluminum metal - respirable fraction 5   

Nickel carbonyl 0.007 0.001 0.001 

Nickel, metal and insoluble compounds 1   

Silver, metal and insoluble compounds 0.01 0.000 0.000 

Titanium dioxide - total dust 15 0.001 0.000 

Ferrovanadium dust 1 0.000 0.000 

Respirable dust 0.5   

Silicon - total dust 15 0.017 0.014 

Silicon - respirable fraction 5   

Sodium fluoroacetate 0.05 0.016 0.019 

Sodium hydroxide 2   

Magnesium oxide fume - total particulate 15 0.215 0.183 

Calcium silicate - total dust 15 1.836 0.641 

Calcium silicate - respirable fraction 5   

Barium, soluble compounds 0.5 0.001 0.001 

Barium sulfate - total dust 15   

Barium sulfate - respirable fraction 5   

Phosphoric acid 1 0.635 0.281 

Zinc chloride fume 1 0.719 0.354 

Zinc oxide fume 5   

Zinc oxide - total dust 15   

Zinc oxide - respirable fraction 5   

Molybdenum - soluble compounds 5 0.040 0.029 

Molybdenum - insoluble compounds - total dust 15   

Molybdenum - insoluble compounds 3   
Boron oxide - total dust 15 0.137 0.017 
Boron trifluoride 3   
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Figure 40 - Permissible Exposure Level Comparison, ≤15ppm 

 

Figure 41 - Permissible Exposure Level Comparison, ≤1ppm 
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Summary 

 In summary, the results from comparing filtering methods, analyzing particulate 

matter with microscopy, kinematic viscosity, metals, water and coolant, and chemical 

characteristics with GC were discussed.  Air pollution considerations were calculated 

based on a Guassian dispersion model and the results were compared to a permissible 

exposure limit table and visualized in column charts.  
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V.  Discussion 

Summary of Research 

In summary, the researcher has studied metals, viscosity, water content, and other 

topics related to using WMO as an alternative supplemental fuel source.  While the data 

was erratic for filter effectiveness, it did not rule out burning WMO as an alternative 

recycling method.  This considers the assumption of blend concentrations remaining 

under 5% and the emissions control devices on the BPU handling most of the exhaust 

emissions.  At 5%, the WMO is diluted with diesel fuel so much that the metal 

concentrations are rendered trivial which allows exhaust emission levels to remain below 

permissible exposure levels without the assistance of stock engine emissions control 

devices.  The results relevant to diesel fuel specifications are shown below in Table 12. 

Table 12 - Comparison of Research Results to Fuel Requirements (Cummins, 2017) 

 Required Diesel Fuel 
(2017)1 

Contingency Diesel Fuel 
(2017)2 

5% WMO Blend 

Kinematic Viscosity 1.3 to 4.1 cSt at 40°C 1.3 to 13.1 7.3 to 8.8 

Sodium Content 0.5ppm 
maximum 

10ppm 4ppm 

Water & Sediment Not to exceed 0.05 
volume-percent 
 

0.5 volume-percent 0.07 volume-percent 

Carbon Residue Not to exceed 0.35 mass-
percent on 10 volume-
percent residuum 
 

5.0 mass-percent 0.1 mass-percent 

Density 0.816-0.876 g/cc at 15°C 
 

0.750-0.965 0.822-0.846 

Heavy Metals  Vanadium   5ppm max 
Aluminum   1ppm max 
Silicon         1ppm max 

1ppm 
2ppm 
3ppm 

1Ultra Low Sulfur Diesel – Required in all highway diesel vehicles as of 2006. 
2Additional maintenance may be required when using contingency fuels. 
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Based on information from Cummins, Inc’s experience on the matter, the BPU is 

expected to perform with negligible diminished power output while using up to a 5% 

WMO-fuel blend.  No permanent damage to the fuel system is expected at such a low 

fuel blend ratio, however, there is anticipated attrition of fuel filters, coking of injector 

nozzles, clogging of the catalyst, and potential scarring of the high-pressure fuel pump.  

Knowing that modern diesel engine fuel delivery systems can handle WMO blends at a 

low ratio, the research questions posed in Chapter I can now be answered: 

 How much filtration is required for WMO to be considered clean enough for use? 

o Based on Cummins filtration research, filtering to 5-micron is permissible, 

but 2-micron is better.  Coincidentally, these are the sizes of the two-stage 

factory filters installed on the BPU.  If WMO is not filtered whatsoever, a 

more rapid attrition of filter cartridges is expected. 

 What harmful environmental effects exist?  

o There is the potential for increased levels of metals emissions into the air 

which can cause occupational health risks to anyone working near a BPU 

in operation.  In this study, theoretical exhaust emissions from a 5% fuel 

blend did not exceed OSHA PEL, as determined by the Gaussian 

dispersion model.  However, these levels would need to be confirmed with 

direct measurement techniques.   

Significance of Research 

The significance of this research impacts DoD energy supply and security.  It can 

be applied at contingency bases of all sizes and mission sets.  The ability to burn 
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alternative fuels in diesel generators extends the fuel supply and mitigates the burden of 

handling hazardous waste removal at contingency bases when the focus should be on the 

combat missions deployed forward from these bases. 

Recommendations for Action 

 It is recommended to develop a simple and easy WMO collection routine to bring 

the WMO from the maintenance shops to the generator fuel supply locations.  The WMO 

can be filtered on site and introduced into the fuel tank immediately. Once the WMO is 

blended with the fuel, it is no longer treated as hazardous waste.  Civil Engineer 

craftsmen possess the in-house capability of constructing a simple filter rig with 

commercial-off-the-shelf fuel filtering components.  If cartridge filters are used, they 

should be arranged in sequence with descending micron ratings, with the recommended 

levels starting at 10-micron and descending to 2-micron.  An additional recommendation 

to improve performance awareness is to install a pressure gauge before each filter.  A 

sudden drop in pressure before a filter shows that filter is clogged and needs to be 

replaced immediately.  

 If a centrifuge is used, commercial-off-the-shelf products exist catering to fuel 

blending hobbyists.  These suppliers make kits of hardware that will fit on a 55-gallon 

drum; however, many are customizable and relatively inexpensive.  A barrel of oil should 

be allowed to continuously cycle through the centrifuge for multiple passes before 

dumping into a fuel tank.  A single pass through the centrifuge may not remove enough 

containments.  It is advisable to follow the manufacturer’s recommendation no matter 

what filter setup is used.   
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 Finally, if there is any doubt that a WMO barrel may have water or coolant in it, 

the barrel should be rejected and disposed of through traditional hazardous waste 

procedures instead of attempting to de-water.  There is very low reward compared to the 

risk of unnecessarily introducing water to any fuel system. 

Recommendations for Future Research 

 Addressing the limitations to this study is a great start to furthering research in 

this method of recycling.  In this study, the oil samples were unable to be followed from 

virgin source to waste product, so the virgin samples used were not an exact comparison 

to the waste products studied.  To further explore engine component wear, particle size 

and concentration should be obtained from more virgin and waste motor oil samples.  In 

addition, a partnership with the diesel engine manufacturer would be greatly beneficial.   

 Once the component wear has been sufficiently studied, a look at changes in 

exhaust emissions from different WMO fuel blends would be necessary to influence the 

decision on whether this WMO recycling method is beneficial.   

 Empirical testing of exhaust emissions would be beneficial as well, to determine 

the consequences relating to occupational health risks. 

 Finally, both economic and environmental life cycle analyses should be 

performed to compare this research to traditional WMO disposal and recycling methods.   
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Appendix A: Sample Information 

The following four tables in Appendix A display the raw data given by ALS 

Global Tribology Lab and the categories of model and usage information for the different 

sample donor vehicles involved in this study.   

  

UnitName Fluid Description 
Compartment 

Condition Metals (ppm) 

  Condition 
Filter 

Method Weight Severity 
Problem 

Code Fe Cr Pb Cu Sn Al Ni Ag Ti V 
Deuce Used  15W40 Normal  15 1 2 2 <1 3 <1 <1 <1 <1 
Chevy Used  15W40 Normal  17 <1 <1 3 <1 4 <1 <1 <1 <1 

Bobber Used  15W40 Severe Wear 147 13 89 45 11 31 2 <1 2 <1 
A Used  5W30 Abnormal Low ipH 135 4 54 23 2 11 5 <1 <1 <1 
B Filtered Centrifuge 5W30 Abnormal Oil 121 4 49 19 2 10 5 <1 <1 <1 
C Virgin - Motor Oil  5W30 Normal  <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 
D Virgin - Motor Oil  15W40 Normal  <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 
E Used  15W40 Normal  39 1 5 291 4 6 <1 1 <1 <1 
F Filtered Centrifuge 15W40 Normal  38 1 6 255 4 5 <1 1 <1 <1 
G Used  15W40 Severe Fuel 27 <1 3 6 <1 3 <1 <1 <1 <1 
H Filtered Centrifuge 15W40 Abnormal Fuel 28 1 3 7 <1 3 <1 <1 <1 <1 
I Used  15W40 Normal  32 2 <1 3 <1 2 <1 <1 <1 <1 
J Filtered Centrifuge 15W40 Normal  34 2 <1 26 <1 3 <1 <1 <1 <1 
L Virgin - Diesel  D2 Normal  <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 
M Virgin - Biodiesel  B20 Normal  <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 
N Used  5W30 Abnormal Oil 214 4 64 34 3 13 5 <1 <1 <1 
O Filtered Centrifuge 5W30 Caution Dirt 192 4 59 29 3 11 5 <1 <1 <1 
P Used  various Abnormal Water 54 3 13 8 2 6 2 <1 <1 <1 
Q Filtered Centrifuge various Caution Water 53 3 13 8 2 6 2 <1 <1 <1 
R Used  various Caution Oil 89 4 20 33 2 11 1 <1 <1 <1 
S Filtered Centrifuge various Caution Water 88 4 19 32 2 11 1 <1 <1 <1 
T Filtered Cartridge various Caution Water 111 4 23 48 3 13 1 <1 <1 <1 
U Used   ATF Normal   28 <1 2 16 <1 4 <1 <1 <1 <1 
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Unit 
Name 

Fluid Description Contaminants (ppm) Additives (ppm) 

Condition 
Filter 

Method Weight Si Na K Mg Ca Ba P Zn Mo B 

Deuce Used  15W40 5 10 <5 38 2371 <1 1161 1233 4 42 

Chevy Used  15W40 11 4 <1 459 2101 <1 1318 1626 98 483 

Bobber Used  15W40 28 34 4 182 6467 <1 2237 2532 142 196 

A Used  5W30 45 15 <1 453 1845 <1 890 1169 81 41 

B Filtered Centrifuge 5W30 39 14 <1 407 1878 <1 882 1172 81 60 

C Virgin - Motor Oil  5W30 3 8 <1 10 2276 <1 803 1004 82 252 

D Virgin - Motor Oil  15W40 4 3 <1 921 1078 <1 1057 1296 63 <5 

E Used  15W40 35 8 9 622 1422 <1 971 1214 38 <5 

F Filtered Centrifuge 15W40 32 7 9 646 1422 <1 991 1248 40 <5 

G Used  15W40 3 8 2 668 1032 <1 829 984 36 <5 

H Filtered Centrifuge 15W40 4 7 2 633 977 <1 816 967 34 <5 

I Used  15W40 5 4 <1 756 1153 <1 976 1171 41 <5 

J Filtered Centrifuge 15W40 8 5 <1 741 1174 <1 982 1177 41 <5 

L Virgin - Diesel  D2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <5 

M Virgin - Biodiesel  B20 <1 <1 <1 <1 <1 <1 <1 <1 <1 <5 

N Used  5W30 59 12 1 19 2263 <1 761 904 106 42 

O Filtered Centrifuge 5W30 49 9 1 30 2256 <1 775 932 103 59 

P Used  various 17 23 3 384 1782 1 841 992 42 27 

Q Filtered Centrifuge various 17 24 3 429 1788 1 873 1037 45 26 

R Used  various 28 55 8 116 1433 5 672 745 38 38 

S Filtered Centrifuge various 28 56 9 142 1482 5 696 771 39 38 

T Filtered Cartridge various 32 66 10 172 1662 5 805 919 43 44 

U Used   ATF 5 3 <1 6 89 4 231 15 <1 90 
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Unit 
Name 

Fluid Description Contaminants Physical Tests Physical/Chemical 

Condition Weight 
Water 

(%) Coolant 

Viscosity   
Fuel 
(%) 

Solids 
(%) 

PQ 
Index 

Soot (%) 
Infrared 

TBN 
(mgKOH/g) 

TAN 
(mgKOH/g) 

40°C 
(cSt) 

100°C 
(cSt) 

Deuce Used 15W40 <0.05 No  15.5 <1   <0.1 7.7   
Chevy Used 15W40 <0.05 No  15.0 <1   0.3 5.5   

Bobber Used 15W40 <0.05 No  15.2 <1   0.8 6.4   
A Used 5W30 <0.05 No  18.3   <10   1.2   
B Filtered -Centrifuge 5W30 <0.05 No  16.9   <10   1.7   
C Virgin - Motor Oil 5W30 <0.05  63.1 10.4  <0.1 <10     1.76 
D Virgin - Motor Oil 15W40 <0.05  110.4 15.1  <0.1 <10     2.04 
E Used 15W40 <0.05 No  13.6 <1  <10 0.3 4.2   
F Filtered - Centrifuge 15W40 <0.05 No  13.9 <1  <10 0.3 4.4   
G Used 15W40 <0.05 No  9.4 6  <10 <0.1 2.1   
H Filtered - Centrifuge 15W40 <0.05 No  10.2 5  <10 <0.1 2.6   
I Used 15W40 <0.05 No  13.3 <1  <10 <0.1 5.8   
J Filtered - Centrifuge 15W40 <0.05 No  13.3 <1  <10 <0.1 5.7   
L Virgin - Diesel D2 <0.05 No  1   <10 <0.1 <1.0   
M Virgin - Biodiesel B20 <0.05 No  1.7   <10 <0.1 <1.0   
N Used 5W30 <0.05 No  9.6   <10   <1.0   
O Filtered - Centrifuge 5W30 <0.05 No  9.9   <10   1.3   
P Used various 0.52 No  N/A   <10   4.2   
Q Filtered - Centrifuge various 0.40 No  N/A   <10   4.4   
R Used various 0.34 No  N/A   <10   2.2   
S Filtered - Centrifuge various 0.41 No  N/A   <10   2.4   
T Filtered - Cartridge various 0.35 No  N/A   <10   2.8   
U Used ATF <0.05     7.7   0.1 <10     0.96 
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Appendix B: Descriptive Statistics 

 
The following four tables in Appendix B show descriptive statistics calculated by the 

researcher from data reported by ALS Tribology in December 2016.   

 

Parameter Waste Oils* 
     

 
N min-max median mean ±St Dev variance CV% 

Fe (ppm) 11 15-147 39 72.5 62.7 7.9 87% 
Cr 11 <1-13 2 3.2 3.4 1.8 105% 
Pb 11 <1-89 5 23.1 29.7 5.4 128% 
Cu 11 2-291 16 42.2 79.9 8.9 190% 
Sn 11 <1-11 2 2.6 2.8 1.7 106% 
Al 11 2-31 6 8.5 7.9 2.8 93% 
Ni 11 <1-5 1 1.9 1.5 1.2 79% 
Ag 11 <1-1 1 1.0 0.0 0.0 0% 
Ti 11 <1-2 1 1.1 0.3 0.5 26% 
V 11 <1 1 1.0 0.0 0.0 0% 
Si 11 5-59 17 21.9 17.9 4.2 82% 

Na 11 3-55 10 16.0 15.2 3.9 95% 
K 11 <1-9 2 3.3 2.8 1.7 86% 

Mg 11 6-756 384 336.6 264.5 16.3 79% 
Ca 11 89-6467 1782 1996.2 1543.4 39.3 77% 
Ba 11 <1-5 1 1.6 1.4 1.2 84% 

P 11 231-2237 890 989.7 474.8 21.8 48% 
Zn 11 15-2532 1169 1144.1 581.0 24.1 51% 

Mo 11 <1-142 42 57.0 42.1 6.5 74% 
B 11 <5-196 0.05 119.9 146.7 12.1 122% 

Viscosity (40C) 0 -- -- -- -- -- -- 
Viscosity (100C) 9 7.7**-18.3 13.6 13.1 3.3 1.8 25% 

Soot (%) 6 <0.1-0.8 0.3 0.5 0.2 0.5 51% 
Water (%) 11 <0.05-0.52 0.05 0.1 0.2 0.4 127%  

*Includes ATF and barrel of mixed oils  
**Lowest viscosity due to ATF, Lowest WMO is 9.6 

  



96 

Parameter Filtered Oils 
     

 
N min-max median mean ±St Dev variance CV% 

Fe (ppm) 8 28-192 70.5 83.1 53.0 7.3 64% 
Cr 8 1-4 3.5 2.9 1.3 1.1 44% 
Pb 8 <1-59 16 21.6 20.1 4.5 93% 
Cu 8 7-255 27.5 53.0 77.4 8.8 146% 
Sn 8 <1-4 2 2.3 1.0 1.0 43% 
Al 8 3-13 8 7.8 3.7 1.9 48% 
Ni 8 <1-5 1 2.1 1.7 1.3 80% 
Ag 8 <1-1 1 1.0 0.0 0.0 0% 
Ti 8 <1 1 1.0 0.0 0.0 0% 
V 8 <1 1 1.0 0.0 0.0 0% 
Si 8 4-49 30 26.1 14.4 3.8 55% 

Na 8 5-66 11.5 23.5 22.5 4.7 96% 
K 8 <1-10 2.5 4.5 3.8 2.0 85% 

Mg 8 30-741 418 400.0 246.8 15.7 62% 
Ca 8 977-2256 1572 1579.9 380.6 19.5 24% 
Ba 8 <1-5 1 2.0 1.7 1.3 87% 

P 8 696-982 844.5 852.5 94.4 9.7 11% 
Zn 8 771-1248 1002 1027.9 150.9 12.3 15% 

Mo 8 34-103 42 53.3 23.2 4.8 44% 
B 8 <5-60 32 30.3 22.1 4.7 73% 

Viscosity (40C) 0 -- -- -- -- -- -- 
Viscosity (100C) 5 9.9-16.9 13.3 12.8 2.6 1.6 20% 

Soot (%) 3 <0.1-0.3 0.1 0.2 0.1 0.3 57% 
Water (%) 8 -- 0.05 0.2 0.2 0.4 93% 
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Parameter   Virgin Oils*  
N min-max median mean ±St Dev variance CV% 

Fe (ppm) 2 <1 1 1 0 0.0 0% 
Cr 2 <1 1 1 0 0.0 0% 
Pb 2 <1 1 1 0 0.0 0% 
Cu 2 <1 1 1 0 0.0 0% 
Sn 2 <1 1 1 0 0.0 0% 
Al 2 <1 1 1 0 0.0 0% 
Ni 2 <1 1 1 0 0.0 0% 
Ag 2 <1 1 1 0 0.0 0% 
Ti 2 <1 1 1 0 0.0 0% 
V 2 <1 1 1 0 0.0 0% 
Si 2 3-4 3.5 3.5 0.5 0.7 14% 

Na 2 3-8 5.5 5.5 2.5 1.6 45% 
K 2 <1 1 1 0 0.0 0% 

Mg 2 10-921 465.5 465.5 455.5 21.3 98% 
Ca 2 1078-2276 1677 1677 599 24.5 36% 
Ba 2 <1 1 1 0 0.0 0% 

P 2 803-1057 930 930 127 11.3 14% 
Zn 2 1004-1296 1150 1150 146 12.1 13% 

Mo 2 63-82 72.5 72.5 9.5 3.1 13% 
B 2 <5-252 128.5 128.5 123.5 11.1 96% 

Viscosity (40C) 2 63.1-110.4 86.75 86.75 23.65 4.9 27% 
Viscosity (100C) 2 10.4-15.1 12.75 12.75 2.35 1.5 18% 

Soot (%) 2 <0.01 0.01 0.01 0 0.0 0% 
Water (%) 2 <0.05 0.05 0.05 0 0.0 0% 

 *SAE 15W40 and 5W30 
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Parameter Virgin Fuels* 
 N min-max median mean ±St Dev variance CV% 

Fe (ppm) 2 <1 1 1 0 0 0 
Cr 2 <1 1 1 0 0 0 
Pb 2 <1 1 1 0 0 0 
Cu 2 <1 1 1 0 0 0 
Sn 2 <1 1 1 0 0 0 
Al 2 <1 1 1 0 0 0 
Ni 2 <1 1 1 0 0 0 
Ag 2 <1 1 1 0 0 0 
Ti 2 <1 1 1 0 0 0 
V 2 <1 1 1 0 0 0 
Si 2 <1 1 1 0 0 0 

Na 2 <1 1 1 0 0 0 
K 2 <1 1 1 0 0 0 

Mg 2 <1 1 1 0 0 0 
Ca 2 <1 1 1 0 0 0 
Ba 2 <1 1 1 0 0 0 

P 2 <1 1 1 0 0 0 
Zn 2 <1 1 1 0 0 0 

Mo 2 <1 1 1 0 0 0 
B 2 <5 5 5 0 0 0 

Viscosity 
(40C) 

0 -- -- -- -- -- -- 

Viscosity 
(100C) 

2 1-1.7 1.35 1.35 0.35 0.59 26% 

Soot (%) 2 <0.1 0.1 0.1 0 0 0 
Water (%) 2 <0.05 0.05 0.1 0 0 0 

 *D2 diesel and B20 biodiesel 
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Appendix C: Gaussian Dispersion Model 

 
Figure 20.4, Tables 20.1, and 20.2 are copied from Air Pollution Control (Cooper & Alley, 2011). 

 

 

Figure 20.4 Coordinate system showing Gaussian distribution in the horizontal and vertical.  
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Table 20.1  Stability Classifications 

Surface Wind 
Speeda [m/s] 

Day 
Incoming Solar Radiation 

Night 
Cloudinesse 

Strongb Moderatec Slightd 
Cloudy 
(≥4/8) Clear  (≤3/8) 

<2 A A-Bf B E F 
2-3 A-B B C E F 
3-5 B B-C C D E 
5-6 C C-D D D D 
>6 C D D D D 

aSurface wind speed is measured at 10m above the ground. 
bCorresponds to clear summer day with sun higher than 60º above the horizon. 
cCorresponds to a summer day with a few broken clouds, or a clear day with sun 35-60º above 
the horizon. 
dCorresponds to a fall afternoon, or a cloudy summer day, or a clear summer day with the sun 
15-35º. 
eCloudiness is defined as the fraction of sky covered by clouds. 
fFor A-B, B-C, or C-D conditions, average the values obtained for each. 
*A=Very unstable D=Neutral   
  B=Moderately unstable E=Slightly stable   
  C=Slightly unstable F=Stable   
  Regardless of wind speed, Class D should be assumed for overcast conditions, day or night. 

Adapted from Turner, 1970. 

 
 
 
Table 20.2 Values of Curve-Fit Constants for Calculating Dispersion Coefficients as a 
Function of Downwind Distance and Atmospheric Stability 

Stability a b 
x < 1 km x > 1 km 

c d f c d f 
A 213 0.894 440.8 1.941 9.27 459.7 2.094 -9.6 
B 156 0.894 106.6 1.149 3.3 108.2 1.098 2.0 
C 104 0.894 61.0 0.911 0 61.0 0.911 0 
D 68 0.894 33.2 0.725 -1.7 44.5 0.516 -13.0 
E 50.5 0.894 22.8 0.678 -1.3 55.4 0.305 -34.0 
F 34 0.894 14.35 0.740 -0.35 62.6 0.180 -48.6 
Adapted from Martin, 1970. 
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Acronyms 

ACGIH American Conference of Government Industrial Hygienists 
AFIT Air Force Institute of Technology 
ASTM American Society for Testing and Materials 
ATF Automatic Transmission Fluid 
BEAR Basic Expeditionary Airfield Resource 
BPU BEAR Power Unit 
CEMIRT Civil Engineer Maintenance Inspection and Repair Team 
CFR Code of Federal Regulations 
CI Compression Ignition 
DEXMERC ATF trade name meeting DEXRON and MERCON requirements 
DoD Department of Defense 
EGR Exhaust Gas Recirculation 
EO Executive Order 
EPA Environmental Protection Agency 
GC Gas Chromatography 
GOV Government Owned Vehicle 
HDPE High-Density Polyethylene 
ICP-AES Inductively Coupled Plasma - Atomic Emission Spectrometry 
JSPPOH Joint Service Pollution Prevention Opportunity Handbook 
KTA Manufacturer identifier: not an acronym 
LDS Manufacturer identifier: Inline, Diesel, Supercharged 
LRS Logistics Readiness Squadron 
MCRS Modular Common Rail System 
MS Mass Spectrometry 
NIST National Institute of Standards and Technology 
NSPS New Source Performance Standards 
OSHA Occupational Safety and Health Administration 
PEL Permissible Exposure Levels 
PQ Particle Quantity 
QSK Manufacturer identifier: not an acronym 
RCRA Resource Conservation and Recovery Act 
SCR Selective Catalytic Reduction 
SEM Scanning Electron Microscope 
USAF United States Air Force 
WMO Waste Motor Oil 
WRM War Reserve Materiel 
WVO Waste Vegetable Oil 
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