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Abstract

Receptor for Advanced Glycation Endproducts (RAGE) is a multiligand member of the
immunoglobulin superfamily of cell surface molecules which serves as a receptor for amyloid-f
peptide (AB) on neurons, microglia, astrocytes, and cells of vessel wall. Increased expression of
RAGE is observed in regions of the brain affected by Alzheimer’s disease (AD), and Ap-RAGE
interaction /in vitro leads to cell stress with the generation of reactive oxygen species and
activation of downstream signaling mechanisms including the MAP kinase pathway. RAGE-
mediated activation of p38 MAP kinase in neurons causes Ap-induced inhibition of long-term
potentiation in slices of entorhinal cortex. Increased expression of RAGE in an Ap-rich
environment, using transgenic mouse models, accelerates and accentuates pathologic,
biochemical, and behavioral abnormalities compared with mice overexpressing only mutant
amyloid-p protein precursor. Interception of Ap interaction with RAGE, by infusion of soluble
RAGE, decreases AP content and amyloid load, as well as improving learning/memory and
synaptic function, in a murine transgenic model of Ap accumulation. These data suggest that
RAGE may be a therapeutic target for AD.

Keywords

Amyloid-B; peptide receptor; cerebral blood flow; endothelin-1; immunoglobulin superfamily;
long-term potentiation; transgenic model

INTRODUCTION

Recent studies have tied the pathogenesis of neuronal dysfunction in Alzheimer’s disease
(AD), at least in part, to the presence of toxic oligomers of the amyloid-p peptide (AB) in
particular regions of the cerebral cortex [1-4]. This association of A with toxicity in the
central nervous system (CNS) and a potential causal role in AD is supported by studies in
patients with genetic mutations in the amyloid-p protein precursor (ABPP; which generates
increased levels of AB), and studies in genetically manipulated mice overexpressing mutant
forms of ABPP and presenilins that also result in increased production of Af [1-4]. Studies
in cell culture and 77 vivo, in which A (usually at high concentrations) has been exposed to
cellular elements and toxicities recorded, are supportive of this view, though the relevance
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of this experimental situation to the more complex /n vivo milieu is less direct. Although
much work has focused on how A is produced, its assembly into oligomers and fibrils, and
its deposition in the brain, the mechanisms through which it exerts toxic effects have been
more difficult to discern [1,4,5]. While the “amyloid hypothesis” posits a direct relationship
between AP and neuronal toxicity of AD, it does not argue against a molecular pathway [2].
It is clear that high levels of Ap exert nonspecific toxicity on a range of cell types (in vivo
and /n vitro), but the mechanism through which pathophysiologically-relevant levels of AR
perturb cellular functions remains to be clearly mapped out.

One of the most commonly employed mechanisms through which low concentrations of
mediators (physiologic or pathologic) exert their effects is by employing cellular binding
sites/receptors to concentrate molecules at the cell surface and magnify their effects via
signal transduction. This concept led us to propose that potential cellular acceptor sites for
AP might be present and could function as pathologic receptors. In contrast to physiologic
receptor-ligand interactions, the recognition of toxic Ap oligomers by a cell surface structure
was more likely to represent properties of a “pattern recognition receptor” whereby a
particular secondary/tertiary structure provided the molecular determinants for such an
interaction rather than the primary structure [6,7]. Thus, a multiligand receptor was likely to
be involved. Furthermore, since A is quite varied in its ability to form molecular
assemblies, it was more than likely that several cell surface molecules might be involved,
and that these could vary from cell-to-cell. Although one might suggest that such receptors
were “scavengers,” functioning to dispose toxic material in the environment [8,9], since the
interaction between AP and the receptor was fortuitous, it was also possible to extend to a
wider range of receptors.

The focus of this review is the Receptor for Advanced Glycation Endproducts or RAGE, a
member of immunoglobulin superfamily of cell surface molecules that functions as a cell
surface receptor for AB [10- 12]. We have hypothesized that RAGE has an integral role in
the pathologic properties of A early in the disease process when low levels of toxic Ap
oligomers are exerting their effects as true mediators. Later in the course of disease, when
higher concentrations of Ap are present and extensive amyloid deposits are observed,
multiple other mechanisms including nonspecific toxicity are likely to assume increasing
importance in the ultimate death of neurons.

RAGE: AGEs and RAGE

RAGE was discovered as part of an effort to identify cellular interaction sites for advanced
glycoxidation endproducts (AGEs) [13,14]. AGEs accumulate over time in a variety of
tissues and circumstances and are associated with changes in tissue/cell properties and organ
dysfunction [15-17]. They form as the result of nonenzymatic glycoxidation [15,17].
Although situations with high levels of reducing sugars, especially in the intracellular
environment, speed their formation, oxidant stress is just as important and enzymatic
mechanisms brought to bear in inflammation, such as the action of myeloperoxidase, also
result in the generation of AGEs [15-17]. Such products of nonenzymatic glycoxidation are
also found in AD brain potentially due to the delayed turnover of proteins and the presence
of a pro-oxidant environment [18-21]. When high levels of glucose are exposed to proteins
for extended periods /n vitro, multiple glycoxidation products form, only some of which are
relevant to pathobiology /n vivo. Nonetheless, certain species are produced in the incubator,
which do mimic AGEs found /n vivo. Glucose-modified albumin, formed by the prolonged
incubation of high levels of glucose with albumin, was used to detect tissue-associated
binding proteins in lung extracts. The result of our biochemical analysis of lung tissue was
the identification of RAGE [14]. Using a similar set of binding assays, but substituting Ap
for AGEs, we found the RAGE also interacted with amyloid peptide [12].
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RAGE is a member of the immunoglobulin super-family of cell surface molecules [10,13].
Its extracellular domain is composed of three immunoglobulin-like regions, one N-terminal
“V”-type domain and two “C”-type domains. There is one transmembrane spanning domain
and a short, highly charged cytosolic tail. On SDS-PAGE, RAGE is a single chain species
with a migration corresponding to a molecular weight of about 50-55 kDa. Although there is
only one RAGE gene in humans, located in proximity to the major histocompatibility
complex, there are several alternatively spliced forms that arise from the full-length RAGE
transcript [22,23]. At least one of these encodes a portion of the molecule corresponding to
the extracellular domain and may have a role in regulating access of ligands to RAGE under
physiologic/pathologic conditions (see below). Soluble forms of RAGE (i.e., devoid of the
transmembrane spanning and cytosolic domains) are termed SRAGE and one particular form
produced by alternative splicing is called endogenous secretory RAGE (esRAGE) [24]. The
extracellular domain of RAGE is most similar to other members of the immunoglobulin
superfamily, such as muc18 and ALCAM [10,11]. Ligand binding properties of the
molecule have been predominately localized to the V-type domain present towards the N-
terminus of the extracellular portion of the receptor. Recent studies suggest that the V-
domain is closely associated with C1, but not the C2, domain, though the crystal structure of
the receptor has not been solved as of yet. What is particularly striking about RAGE is its
repertoire of ligands. The receptor not only binds AGEs and AP but interacts with multiple
crossed B-sheet fibrils, as well as the family of S100/calgranulins, o-integrins and high
mobility group box 1 protein (HMGB1) [10, 22,25-28].

In the case of AGEs, receptor recognition requires a post-translational modification of the
ligand. Thus, although native albumin does not bind RAGE, AGE-modified albumin does
bind to RAGE. In the case of amyloid A, although amyloid A in its monomeric state does
not bind RAGE, the fibrillar form is a ligand for the receptor [12,29]. Such observations
have led to the contention that RAGE is a “pattern recognition receptor,” rather than a
receptor recognizing the primary structure of ligands (as mentioned in the Introduction, see
above). Furthermore, although the precise structural determinants mediating ligand binding
to the receptor are not known, it has been theorized that properties associated with p-sheets
may be involved. In this regard, the macromolecular ligands of RAGE appear to cross-
compete in studies with RAGE extracellular domain and isolated V-domain. This suggests
that the same and/or overlapping ligand binding sites exist in the receptor’s binding pocket.
We hypothesize that this is a very flexible binding pocket able to accommaodate large
structures, even fibrils, or structures which are quite different, such as HMGBL. In a recent
report, Sturchler and colleagues [30] have indicated that oligomers of Ap bind to the RAGE
V-domain, whereas aggregates are more closely associated with the C-domain. Thus, under
certain circumstances it is possible that several domains of the receptor are involved in
ligand recognition [31].

The transmembrane spanning and cytosolic domains of RAGE are quite unremarkable. In
fact, initial extensive analysis of the cytosolic tail has not turned up compelling insights into
proximal events mediating its coupling to signal transduction mechanisms. One report has
shown that the MAP kinase family member Erk binds to the RAGE cytosolic tail [32],
though the generality and relevance of this mechanism, in view of the broad triggering of
signaling events that occurs after ligand engagement of RAGE, is not clear. Considering the
prominent connection between RAGE-mediated cellular activation and changes in cell
shape/migration, it is likely that the receptor will be coupled to down-stream mechanisms
involved in changes in cell shape and motility. Furthermore, since activation of RAGE is
also closely tied to generation of reactive oxygen species, at least in part from an NADPH
oxidase-like mechanism [21,33,34], it is possible that formin-like proteins are involved in
downstream receptor signaling [35,36]. Two observations with respect to intracellular
signaling and RAGE are quite compelling: 1) the cytosolic tail is essential for the receptor to
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signal [37]; and 2) oxidant sensitive mechanisms contribute importantly to signal
transduction mechanisms initiated by RAGE-ligand interaction [28,34]. In terms of the first
observation, when the cytosolic tail of RAGE is deleted (i.e., what remains is a molecule
comprised of the extracellular and transmembrane spanning domains), the mutant species
has properties of a dominant-negative (DN-RAGE) [37]. Thus, when DN-RAGE is
introduced into cells, although it is capable of binding RAGE ligands, RAGE-mediated
cellular activation does not occur. Furthermore, even if that cell also expresses wild-type
(wt) RAGE, the presence of DN-RAGE blocks signaling from the native receptor also. This
suggests, perhaps, that a particular clustering of cytosolic tails of RAGE must occur in order
for the receptor to signal. The presence of DN-RAGE may interfere with this.

Linkage of RAGE and its ligands to pathologic conditions

Links between RAGE and pathobiology are easily suggested when the nature of the
receptor’s ligands are considered. Multiple examples readily come to mind: AGEs form in
an oxidant environment, typical of the setting of inflammation and renal failure [16, 17].
S100 proteins are released at sites of inflammation from polymorphonuclear leukocytes and
other effector cells [38,39]. HMGBL1 is known for inciting an injurious host response
following release from necrotic tissue [38-40]. Macromolecular assemblies of Ap (and other
amyloid-associated peptides/proteins) are associated with degenerative processes, such as
AD [41-43]. Furthermore, in certain circumstances, several RAGE ligands are present at the
site of lesions; S100 proteins and AGEs are both localized to atherosclerotic lesions in
diabetic animals [44,45]; and, AGEs and AP assemblies both co-exist in AD brain [12].
Upregulation of RAGE at sites of ligand accumulation facilitates sustained ligand-receptor
interaction eventuating in long-term cellular stimulation [10,11,22,28]. It is important to
emphasize that in each of these situations, RAGE-ligand interaction appears to have the
ability propagate an injurious host response incited by the underlying disease process (AD,
diabetic complications, inflammation, etc.), but RAGE does not, per se, cause the basic
disease process.

RAGE and amyloid-B peptide

The relevance of RAGE to AD was suggested by increased levels of the receptor in brains of
patients with AD compared with nondemented controls [12,46], as well as the receptor
binding data mentioned above (RAGE-Ap interaction). Although when the structure of
RAGE is solved, it may be quite rational that AB binds to the receptor, it was certainly an
unexpected finding experimentally. It is difficult to know exactly which species of A binds
to RAGE, though it is becoming increasing evident that it may be a soluble oligomer.
However, it is interesting that binding of Ap to RAGE occurs with fresh preparations of
AB1_40, likely to be largely monomers/oligomers, as well as with aged preparations of
AB1_42 specially made to enrich for oligomers and fibrillar material. Further-more, when Ap
preparations are incubated with RAGE-bearing cells, evidence of cell stress, as manifested
by activation of NF-xB and generation of oxidant stress is observed [12]. The latter are
consistent with the receptor’s ability to mediate “toxic” effects of Ap on cells consistent
with what might be predicted for oligomeric amyloid peptide.

Although binding of AP to RAGE in vitro was of interest, the important point was to assess
whether such an interaction might occur under more physiologic conditions, and if there
were functional consequences. In this regard, mice infused with radioiodinated AB1_49
demonstrated transport across the blood-brain barrier reflecting capillary uptake [47]. Based
on HPLC (high pressure liquid chromatography) and immunostaining, it appeared that
transported AP was, at least in part, intact, i.e., it was not completely degraded. Such
transport of AP appeared to depend on the expression of RAGE, as it was blocked by anti-
RAGE IgG and sRAGE. In addition, such transport was virtually undetectable in
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homozygous RAGE null mice. Consequences of RAGE-dependent uptake of A were
probed by analyzing expression of tumor necrosis factor-a. (TNFa). Within 30 min of
infusing AR, increased TNFa transcripts and antigen were evident within the brain
parenchyma. Blocking RAGE prevented, in parallel, transport of A and induction of
TNFa. Similar observations were made with respect to induction of interleukin-6 and heme
oxygenase type 1, though the time course was slower than with TNFa..

These observations raised the possibility that RAGE might be a physiologic binding site for
AP on the luminal surface of the blood-brain barrier, and that this might be a first step in the
transport of amyloid peptide into the brain parenchymal space. If substantial amounts of Ap
entered the brain by this mechanism (either initially or via recirculation over time), then one
might expect that preventing access of Ap to RAGE in the peripheral circulation would
decrease the amount of total AP in the brain parenchyma. One way to test this was to take
advantage of the properties of SRAGE, the extracellular domain of the receptor. Soluble
RAGE is a protein of molecular weight 35-40 kDa (depending on carbohydrate content)
which binds ligands of the receptor, but does not enter the CNS (as long as the blood-brain
barrier is intact). Thus, administration of SRAGE to the peritoneal cavity or intravenously
results in sequestration of RAGE ligands outside of the CNS due to binding to SRAGE.
Administration of SRAGE for 3 months to mice bearing a transgene for mutant ABPP
(which results in enhanced production of AP and its subsequent deposition in the brain) [48]
decreased the total Ap content of the brain and prevented additional brain parenchymal
accumulation of AB1_42 (Fig. 1a,b). Immunohistologic analysis of murine brains for plaque-
like lesions revealed a striking decrease in the brains of transgenic mice treated with
SRAGE, versus control groups (including those receiving vehicle alone) (Fig. 1c). These
data suggest a link between RAGE and circulation/recirculation of Ap in murine transgenic
models. Furthermore, they suggest the existence of a complex equilibrium between A in
the brain (behind the blood-brain barrier) and that circulating in the peripheral circulation
[47].

From previous studies in cell culture, we knew that engagement of endothelial RAGE
resulted in changes in cellular properties. Since focal changes in cerebral blood flow are
characteristic of AD, and are also observed in murine models, we sought to determine if AB-
RAGE interaction was associated with a change in cerebral blood flow, and what
mechanisms might underlie such a change. Infusion of AB;_40 at nanomolar levels into the
peripheral circulation was associated with a fall in cerebral blood flow (Fig. 2A,B). Such
diminished cerebral blood flow was prevented by administration of anti-RAGE IgG or
SRAGE (Fig. 2B), and was not observed to a significant extent in RAGE null mice. These
data indicated that Ap interaction with RAGE on the vessel wall resulted in diminished
cerebral blood flow [47].

The time course of this fall in blood flow was interesting in that it was not immediate, but
occurred over a 40 min period after the infusion of AR [47]. There was no change for the
first 30 min, and the fall in blood flow occurred over the subsequent 20—40 min (Fig. 2A).
This time interval suggested the possible involvement of a biosynthetic/post-translation
processing mechanism. This led us to probe if AB-RAGE interaction at the level of the
vasculature might result in the production of a vasoconstrictor mediator such as
endothelin-1. In fact, increased levels of immunoreactive endothelin-1 were detected in
cerebral vasculature, and endothelin-1A receptor blockers prevented AB-induced
suppression of cerebral blood flow [47]. In tissue culture, Ap applied to murine brain
endothelial cells resulted in increased expression of preproendothelin-1 mRNA in a RAGE-
dependent manner [47]. These data pointed to the significance, in physiologic terms, of Ap
interaction with RAGE on the surface of the cerebral circulation.

J Alzheimers Dis. Author manuscript; available in PMC 2013 July 29.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Yan et al.

Page 6

The experiments described above were performed under acute conditions, whereas AD and
the consequences of amyloid deposition occur over years [49— 51]. Thus, we sought a
situation in which vascular consequences of exposure to high levels of Ap were established
over months. Our question was whether preventing access of Af to vascular RAGE under
these conditions might have an effect on properties of the vessel wall [52]. For this purpose,
we utilized a different transgenic murine model of AD-type pathology [53]. Mice were aged
to 9 months and vessels were stained for immunoreactive endothelin-1 and cerebral blood
flow was determined. Cerebral vasculature from the transgenic mice did show increased
levels of endothelin-1 associated with the vessels, and cerebral blood flow was decreased,
compared with age- and strain-matched nontransgenic controls [47]. Infusion of SRAGE or
anti-RAGE IgG into these transgenic animals resulted in an increase in cerebral blood flow
(Fig. 3). Thus, even when subjected to an amyloid-rich environment for months, resulting in
decreased cerebral blood flow, an intervention preventing the interaction of RAGE with Ap
had a stimulatory effect on cerebral blood flow. These data point to a reversible component
of decreased blood flow associated with amyloid vascular pathology, and suggest that
RAGE may be a significant player in these settings.

Studies of RAGE in genetically manipulated mice overexpressing mutant ABPP

Within the CNS, RAGE is present on neurons and microglia, as well as in the vasculature
[12]. In the setting of AD, neuronal RAGE is clearly increased in the Ap-rich environment
[12]. This is not unexpected, since RAGE ligands are known to increase expression of the
receptor. Although the mechanism in the case of AP has not been assessed directly, one
possible path-way is through AB-RAGE-mediated activation of NF-xB sites in the RAGE
promoter [10,11]. In view of increased expression of neuronal RAGE in AD, we developed
a transgenic model with targeted overexpression of RAGE in neurons [54] in an Ap-rich
environment (the latter provided by a transgene for mutant ABPP driven the PDGF B-chain
promoter) [48]. Increased expression of RAGE was also driven by the PDGF B-chain
promoter. The double transgenic animals (Tg RAGE/mutant ABPP) overexpressed neuronal
RAGE and mutant ARPP resulting in deposition of Af [54].

By 3-4 months of age, evidence of increased cellular stress was evident in brains of Tg
RAGE/mutant ABPP mice as demonstrated by appearance of a prominent gel shift band
compared with single transgenics (Tg RAGE, Tg mutant ABPP) and strain/age-matched
controls (nontransgenics) in electrophoretic mobility shift assays with NF-xB consensus
probe and nuclear extracts from cerebral cortex [54]. Overexpression of RAGE in the Ap-
rich environment (Tg RAGE/mutant ABPP) resulted in strong binding activity for the NF-
xB probe, compared with single transgenics (Fig. 4A). In addition, transgenics in which
wild-type RAGE was replaced with DN-RAGE showed strongly diminished NF-xB
activation (Fig. 4b). DN-RAGE is a form of RAGE from which the cytosolic tail has been
deleted (the extracellular and transmembrane domains are intact). Although DN-RAGE is
competent to bind ligands, it does not engage signaling pathways and actually functions as a
dominant-negative; once introduced to a cell with wild-type RAGE, receptor-mediated cell
signaling from RAGE is blocked.

These data with regard to early NF-xB activation in the cortex of Tg RAGE/mutant ABPP
mice were the first clue to evidence of multiple abnormalities at the level of behavioral,
neuropathologic, and biochemical changes. Studies in the radial arm water maze reflect
hippocampal function at the level of spatial learning and memory [55,56]. At 3—-4 months of
age, Tg RAGE/mutant ABPP mice (double transgenics) displayed impaired ability to learn
the task (acquisition phase of the trials) compared with other groups (non-transgenics and
single transgenics, Tg mutant ABPP and Tg RAGE) (Fig. 5A). By 5-6 months, spatial
learning/memory was impaired in both Tg ABPP and double transgenics, though more
severely in the Tg RAGE/mutant ABPP (Fig. 5B). These data indicated that increased
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expression of RAGE, due to the presence of the RAGE transgene with expression targeted to
neurons (within the CNS), accelerated neuronal dysfunction in an Ap-rich environment
(provided by the mutant ABPP transgene). This led to the question as to what mechanisms
might underlie this change in neuronal function. For this purpose, studies of synaptic
transmission were performed under long term potentiation (LTP) and basal conditions.
Consistent with previous work [48], we observed differences in basal synaptic transmission
in animals expressing the mutant ABPP transgene compared with nontransgenics.
Unexpected was a suppression in LTP which was observed in double transgenics (Tg
RAGE/mutant ABPP), but not in other groups of animals [54]. These data were consistent
with RAGE-mediated impairment of synaptic plasticity (see below for further studies on the
role of RAGE in AB-mediated perturbation of LTP).

Experiments were also performed using neuropathologic technique to understand
implications of enhanced expression of RAGE in an AB-rich environment. Our first studies
assessed the density of cholinergic fibers using a histologic assay for acetylcholinesterase
(AChE) activity. The relevance of this approach is supported by the decreased density of
cholinergic fibers and synapses seen in AD [57,58]. By 3—4 months of age, the effects of the
RAGE transgene were evident in double transgenics; there was a decrease in area occupied
by AchE-positive neurites in the subiculum compared with other groups. These changes
were enhanced over time, and by 14-18 months of age, Tg RAGE/mutant Appp mice
showed even more striking decreased density of AChE-positive neurites.

Further biochemical studies supported the concept that synaptic plasticity was altered when
increased levels of neuronal RAGE were introduced into an AB-rich environment. Studies
were performed at the level of phosphorylation of CREB and action of mitogen-activated
proteinases as well as calcium/calmodulin-dependent protein (CAM) kinase 1. Extracts of
the hippocampus were analyzed by immunoblotting. Levels of phospho-CREB were
increased in 3—4 month-old double transgenics, compared with groups. In terms of MAP
kinases, phosphorylation of p38 was observed in Tg RAGE/mutant ABPP mice, though not
in other groups (3—4 months), and increased phosphorylation of Erk1/2 was observed in the
double transgenics (there was no change in phosphorylation of JINK with respect to the
different transgenics. Levels of phosphorylated CAMK |1 were also selectively increased in
double transgenics, compared with other groups, though this did not occur until 14-18
months ago. Thus, multiple markers associated with synaptic plasticity were altered in mice
with increased levels of Ap and neuronal RAGE [54].

These studies suggest a role for RAGE in the pathogenesis of AB-induced neuronal
dysfunction associated with AD at several levels; the blood-brain barrier and neurons. More
recent studies in which RAGE has been overexpressed in cells of mononuclear phagocyte
origin (including microglia) have demonstrated enhanced neuroinflammation with
consequences for neuronal function. In view of the increased expression of RAGE in
multiple cellular elements in AD brain, it is possible that interception of RAGE-ligand
interaction might be a therapeutic approach in this devastating dementia.

Mechanisms of AB-mediated perturbation of synaptic plasticity: role of RAGE

Changes in synaptic strength over longer periods of time, as modeled by LTP, contribute to
learning and memory in multiple regions of the brain [59,60]. Ap is known to inhibit LTP
[61], and administration of naturally secreted human AP oligomers at nanomolar
concentrations blocks development of LTP in the hippocampus [4,62,63]. Although at
higher levels of Ap (micromolar range), this might be due to Ap engagement of multiple
different receptors, we sought to determine if RAGE might be involved in this nanomolar
effect of AP oligomers [64]. Using entorhinal slices from brains of wild-type mice and
animals with genetically manipulated RAGE expression, we studied the effect of oligomeric
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AB1_42 (200 nM) on LTP. High frequency stimulation of the slices according to a previously
described protocol reproducibly resulted in the development of LTP [65]. Addition of
oligomeric AB1_42 (200 nM) prevented the development of LTP in wt mice (Fig. 6). In the
presence of anti-RAGE 1gG, Ap-induced loss of LTP could be prevented in entorhinal slices
from wt mice (Fig. 6). In contrast, using homozygous RAGE null mice, the same
preparations of AP were ineffective in preventing the development of LTP. To further assess
the underlying mechanism at the level of the receptor, we employed mice expressing a
dominant negative form of RAGE also expressed in cortical neurons (driven by the PDGF
B-chain promoter as above). The latter, transgenic DN-RAGE mice also displayed
protection from Ap-induced inhibition of LTP [64]. Thus, binding of Ap to RAGE must be
followed by receptor-mediated activation of the target cell (which does not occur in cells
bearing DN-RAGE) in order to Ap to block the development of LTP.

To probe the specificity of the electrophysiologic events underlying AB-RAGE-mediated
perturbation of LTP, we extended our studies to long-term depression (LTD) of synaptic
transmission. Using a protocol to induce LTD in entorhinal slices, application of Ap had no
effect, consistent with a previous report [63]. Similarly, in RAGE null mice, induction of
LTD was also normal. Thus, the effect of Ap on LTP, mediated by RAGE, is selective and
does not reflect broad inhibition of electrical/neuronal activity in the cell.

Since RAGE-mediated signal transduction appeared to be necessary for Ap-induced
inhibition of LTP, we examined downstream pathways activated by stimulation of the
receptor. The MAP kinases were a prime candidate as both JNK and p38 have been
implicated in the effect of Ap on LTP in a previous study [66]. Furthermore, we have
previously found MAP kinases to be involved in RAGE-mediated cellular activation in other
contexts [67] and in double transgenic mice overexpressing RAGE and mutant human ApPP
[54]. Using selective inhibitors of INK and p38 MAP kinase, we found that selective
inhibition of p38, but not INK, blocked the effect of Ap on LTP. Consistent with these data,
cell culture experiments with neurons and Ap;_4p, @ nontoxic concentration (200 nM),
demonstrated activation/phosphorylation of p38 MAP kinase that was blocked by inhibition
of RAGE with specific antibodies [64].

RAGE is also present on microglia and astrocytes, as well as neurons and cells of the blood-
brain barrier (endothelial and smooth muscle cells) [12]. Experiments are underway to
determine the contribution of AB-RAGE-mediated cellular activation to the biology of AD.

CONCLUSION

Our studies suggest the merit of a receptor-driven hypothesis for mediating cellular
perturbation by A at early stages of the disease process when concentrations of toxic AR
oligomers are low. There are likely to be multiple receptors for Ap, and several have been
implicated over the years [68]. We propose that RAGE is one of these. The relevance of
RAGE to the pathogenesis of neural dysfunction is supported by increased expression in AD
brain, studies in animals with genetically manipulated mice, and the presence of RAGE on
multiple cell types contributing to ultimate neuronal dysfunction in AD, including cells of
the blood brain barrier, microglia and astrocytes, in addition to neurons. Studies in mice are
strongly suggestive of an effect in man, but we must await results of clinical trials with
RAGE blockers in AD.
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Fig. 1.

Administration of SRAGE to mice bearing a mutant human ABPP transgene (Tg PD-hAPP
mice) reduces cerebral amyloidosis. Total Ap (panel a) and Ap1_42 (panel b) were
determined by ELISA in nontransgenic (negative for the transgene) or transgenic PD-hAPP
mice (+ for the transgene) who were administered SRAGE (or vehicle) from the ages of 6-9
months, as indicated. In panel ¢, image analysis of amyloid load from the experiments in
panels a-b is shown. Adapted from Deane et al. [47].
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Fig. 2.

Cerebral blood flow, Ap, and RAGE. a) Cerebral blood flow (CBF) and systemic blood
pressure (BP) are shown after infusion of human AB1_4 at the indicated time, b) Regional
CBF after administration of vehicle (red), Ap1_49 (orange), AB1_4o+ anti-RAGE 1gG
(yellow); AB1_40+ nonimmune IgG (green) was determined in the motor cortex (MOT),
sensory cortex (SEN), striatum (STR), callosum (CALL) and thalamus (THAL). Adapted
from Deane et al. [47]. (Colours are visible in the electronic version of the article at
www.iospress.nl)
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Fig. 3.
Increased cerebral blood flow in 9 month old Tg2576 mice treated anti-RAGE 1gG (a.-
RAGE), SRAGE but not nonimmune (NI) 1gG. Adapted from Deane et al. [47].
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Fig. 4.

Nuclear extracts from cerebral cortex of 3—4-month old double transgenic mice bearing a
transgene driving overexpression of neuronal RAGE and a transgene expressing mutant
human amyloid precursor protein were studied by electrophoretic mobility shift assay using
a consensus NF-xB probe. Al) RAGE indicates the presence (+) or absence (=) of the
RAGE transgene. mAPP indicates the presence (+) or absence (=) of the mutant amyloid
precursor protein transgene. A2) The same experiment as in panel Al was conducted, but
certain double transgenics had the wild-type RAGE transgene replaced by a transgene
encoding dominant negative (DN) RAGE. The presence (+) or absence (=) of the DN-
RAGE transgene is indicated. Adapted from Arancio et al. [54]
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Fig. 5.

Analysis of spatial learning and memory in double transgenic mice (Tg RAGE/mAPP) using
the radial arm water maze at 3—4 (A) and 5-6 (B) months of age. Symbols denote: RAGE,
mice expressing the RAGE transgene only; APP, mice expressing the mutant ABPP
transgene only; nonTg, nontransgenic age- and strain-matched littermates; and APP/RAGE,
double transgenic mice expressing the mutant ABPP and RAGE transgenes. Adapted from
Arancio et al. [54].

J Alzheimers Dis. Author manuscript; available in PMC 2013 July 29.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuey JoyIny vd-HIN

Yan et al.

1.6
1.4
1.2

1
0.8

0.6 -

Rel Amp.

Page 18

AN "
""‘"' ,
37 “h #411 r
y J =" '

¢ RACE null+A8
A anti-RAGE IgG+AB
¢ vehicle+AB

0.4 +—

| T B T 4 T

T L T ¥ 1 1

0 10 20 30 40 50 60
time (min)

Fig. 6.

Effect of RAGE on AB1_42 (200 nM)-induced inhibition of LTP in slices of entorhinal
cortex. Exposure to Ap (dark bar) did not prevent development of LTP in samples derived
from homozygous RAGE null mice or in slices from wild-type mice preincubated with
blocking antibody to RAGE. Vehicle-treated slices from wild-type mice exposed to A are
shown in grey. HFS = high frequency stimulation protocol used to induce LTP in cortical

slices. Adapted from Origlia [64].
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