45 research outputs found

    Estilo lingüístico y prosocialidad en un contexto político en Twitter

    Get PDF
    El comportamiento prosocial ha sido explicado desde diferentes modelos con el propósito de comprender por qué las personas realizan conductas que benefician a otras de manera voluntaria (Barreto, López y Borja, 2015). El comportamiento prosocial contribuye, en algunos casos, a disminuir comportamientos de racismo, indiferencia social, exclusión y agresividad, entre otros fenómenos del comportamiento antisocial. La teoría evolucionista y las teorías sociales son algunos de los modelos explicativos que tienen más evidencia a favor. Desde la perspectiva evolucionista, se explica la aparición del comportamiento prosocial como una forma de garantizar la supervivencia de la especie, mediante comportamientos cooperativos en los que prevalece el interés a favor de la especie, sobre el individual con el fin de que la información genética sea transmitida de generación en generación (Guijo, 2002).1a edició

    Internalised Values and Fairness Perception: Ethics in Knowledge Management

    Full text link
    This chapter argues for ethical consideration in knowledge management (KM). It explores the effect that internalised values and fairness perception have on individuals’ participation in KM practices. Knowledge is power, and organisations seek to manage knowledge through KM practices. For knowledge to be processed, individual employees—the source of all knowledge—need to be willing to participate in KM practices. As knowledge is power and a key constituent part of knowledge is ethics, individuals’ internalised values and fairness perception affect knowledge-processing. Where an organisation claims ownership over knowledge, an individual may perceive being treated unfairly, which may obstruct knowledge-processing. Through adopting ethical KM practices, individual needs are respected, enabling knowledge-processing. Implications point towards an ethical agenda in KM theory and practice

    EUREC⁴A

    Get PDF
    The science guiding the EUREC⁴A campaign and its measurements is presented. EUREC⁴A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EUREC⁴A marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200 km) and larger (500 km) scales, roughly 400 h of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10 000 profiles), lower atmosphere (continuous profiling), and along the air–sea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EUREC⁴A explored – from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation – are presented along with an overview of EUREC⁴A's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at https://doi.org/10.25326/165 (Stevens, 2021), and a film documenting the campaign is provided as a video supplement

    EUREC⁴A

    Get PDF
    The science guiding the EUREC⁴A campaign and its measurements is presented. EUREC⁴A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EUREC⁴A marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200 km) and larger (500 km) scales, roughly 400 h of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10 000 profiles), lower atmosphere (continuous profiling), and along the air–sea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EUREC⁴A explored – from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation – are presented along with an overview of EUREC⁴A's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at https://doi.org/10.25326/165 (Stevens, 2021), and a film documenting the campaign is provided as a video supplement
    corecore