56 research outputs found

    H_2 emission arises outside photodissociation regions in ultra-luminous infrared galaxies

    Full text link
    Ultra-luminous infrared galaxies are among the most luminous objects in the local universe and are thought to be powered by intense star formation. It has been shown that in these objects the rotational spectral lines of molecular hydrogen observed at mid-infrared wavelengths are not affected by dust obscuration, leaving unresolved the source of excitation of this emission. Here I report an analysis of archival Spitzer Space Telescope data on ultra-luminous infrared galaxies and demonstrate that star formation regions are buried inside optically thick clouds of gas and dust, so that dust obscuration affects star-formation indicators but not molecular hydrogen. I thereby establish that the emission of H_2 is not co-spatial with the buried starburst activity and originates outside the obscured regions. This is rather surprising in light of the standard view that H_2 emission is directly associated with star-formation activity. Instead, I propose that H_2 emission in these objects traces shocks in the surrounding material, which are in turn excited by interactions with nearby galaxies, and that powerful large-scale shocks cooling by means of H_2 emission may be much more common than previously thought. In the early universe, a boost in H_2 emission by this process may speed up the cooling of matter as it collapsed to form the first stars and galaxies and would make these first structures more readily observable.Comment: Main text and supplemental information, 21 pages including 6 figures, 2 table

    Starburst Energy Feedback Seen through HCO+/HOC+ Emission in NGC 253 from ALCHEMI

    Get PDF
    Molecular abundances are sensitive to the UV photon flux and cosmic-ray ionization rate. In starburst environments, the effects of high-energy photons and particles are expected to be stronger. We examine these astrochemical signatures through multiple transitions of HCO+ and its metastable isomer HOC+ in the center of the starburst galaxy NGC 253 using data from the Atacama Large Millimeter/submillimeter Array large program ALMA Comprehensive High-resolution Extragalactic Molecular inventory. The distribution of the HOC+(1−0) integrated intensity shows its association with "superbubbles," cavities created either by supernovae or expanding H ii regions. The observed HCO+/HOC+ abundance ratios are ∌10–150, and the fractional abundance of HOC+ relative to H2 is ∌1.5 × 10−11–6 × 10−10, which implies that the HOC+ abundance in the center of NGC 253 is significantly higher than in quiescent spiral arm dark clouds in the Galaxy and the Galactic center clouds. Comparison with chemical models implies either an interstellar radiation field of G0 ≳ 103 if the maximum visual extinction is ≳5, or a cosmic-ray ionization rate of ζ ≳ 10−14 s−1 (3–4 orders of magnitude higher than that within clouds in the Galactic spiral arms) to reproduce the observed results. From the difference in formation routes of HOC+, we propose that a low-excitation line of HOC+ traces cosmic-ray dominated regions, while high-excitation lines trace photodissociation regions. Our results suggest that the interstellar medium in the center of NGC 253 is significantly affected by energy input from UV photons and cosmic rays, sources of energy feedback

    Reconstructing the shock history in the CMZ of NGC 253 with ALCHEMI

    Get PDF
    Context: HNCO and SiO are well-known shock tracers and have been observed in nearby galaxies, including the nearby (D = 3.5 Mpc) starburst galaxy NGC 253. The simultaneous detection of these two species in regions where the star-formation rate is high may be used to study the shock history of the gas. // Aims: We perform a multi-line molecular study of NGC 253 using the shock tracers SiO and HNCO and aim to characterize its gas properties. We also explore the possibility of reconstructing the shock history in the central molecular zone (CMZ) of the galaxy. // Methods: Six SiO transitions and eleven HNCO transitions were imaged at high resolution 1.″6 (28 pc) with the Atacama Large Millimeter/submillimeter Array (ALMA) as part of the ALCHEMI Large Programme. Both non local thermaldynamic equilibrium (non-LTE) radiative transfer analysis and chemical modeling were performed in order to characterize the gas properties and investigate the chemical origin of the emission. // Results: The nonLTE radiative transfer analysis coupled with Bayesian inference shows clear evidence that the gas traced by SiO has different densities and temperatures than that traced by HNCO, with an indication that shocks are needed to produce both species. Chemical modeling further confirms such a scenario and suggests that fast and slow shocks are responsible for SiO and HNCO production, respectively, in most GMCs. We are also able to infer the physical characteristics of the shocks traced by SiO and HNCO for each GMC. // Conclusions: Radiative transfer and chemical analysis of the SiO and HNCO in the CMZ of NGC 253 reveal a complex picture whereby most of the GMCs are subjected to shocks. We speculate on the possible shock scenarios responsible for the observed emission and provide potential history and timescales for each shock scenario. Observations of higher spatial resolution for these two species are required in order to quantitatively differentiate between the possible scenarios

    Resolving the ISM at the Peak of Cosmic Star Formation with ALMA: The Distribution of CO and Dust Continuum in z similar to 2.5 Submillimeter Galaxies

    Get PDF
    We use Atacama Large Millimeter Array (ALMA) observations of four submillimeter galaxies (SMGs) at z ~ 2–3 to investigate the spatially resolved properties of the interstellar medium (ISM) at scales of 1–5 kpc (0farcs1–0farcs6). The velocity fields of our sources, traced by the 12CO(J = 3–2) emission, are consistent with disk rotation to the first order, implying average dynamical masses of ~3 × 1011 M⊙{M}_{\odot } within two half-light radii. Through a Bayesian approach we investigate the uncertainties inherent to dynamically constraining total gas masses. We explore the covariance between the stellar mass-to-light ratio and CO-to-H2 conversion factor, α CO, finding values of αCO=1.1−0.7+0.8{\alpha }_{\mathrm{CO}}={1.1}_{-0.7}^{+0.8} for dark matter fractions of 15%. We show that the resolved spatial distribution of the gas and dust continuum can be uncorrelated to the stellar emission, challenging energy balance assumptions in global SED fitting. Through a stacking analysis of the resolved radial profiles of the CO(3–2), stellar, and dust continuum emission in SMG samples, we find that the cool molecular gas emission in these sources (radii ~5–14 kpc) is clearly more extended than the rest-frame ~250 ÎŒm dust continuum by a factor >2. We propose that assuming a constant dust-to-gas ratio, this apparent difference in sizes can be explained by temperature and optical depth gradients alone. Our results suggest that caution must be exercised when extrapolating morphological properties of dust continuum observations to conclusions about the molecular gas phase of the interstellar medium (ISM)

    Integrated Proteomic and Metabolomic Analysis of an Artificial Microbial Community for Two-Step Production of Vitamin C

    Get PDF
    An artificial microbial community consisted of Ketogulonicigenium vulgare and Bacillus megaterium has been used in industry to produce 2-keto-gulonic acid (2-KGA), the precursor of vitamin C. During the mix culture fermentation process, sporulation and cell lysis of B. megaterium can be observed. In order to investigate how these phenomena correlate with 2-KGA production, and to explore how two species interact with each other during the fermentation process, an integrated time-series proteomic and metabolomic analysis was applied to the system. The study quantitatively identified approximate 100 metabolites and 258 proteins. Principal Component Analysis of all the metabolites identified showed that glutamic acid, 5-oxo-proline, L-sorbose, 2-KGA, 2, 6-dipicolinic acid and tyrosine were potential biomarkers to distinguish the different time-series samples. Interestingly, most of these metabolites were closely correlated with the sporulation process of B. megaterium. Together with several sporulation-relevant proteins identified, the results pointed to the possibility that Bacillus sporulation process might be important part of the microbial interaction. After sporulation, cell lysis of B. megaterium was observed in the co-culture system. The proteomic results showed that proteins combating against intracellular reactive oxygen stress (ROS), and proteins involved in pentose phosphate pathway, L-sorbose pathway, tricarboxylic acid cycle and amino acids metabolism were up-regulated when the cell lysis of B. megaterium occurred. The cell lysis might supply purine substrates needed for K. vulgare growth. These discoveries showed B. megaterium provided key elements necessary for K. vulgare to grow better and produce more 2-KGA. The study represents the first attempt to decipher 2-KGA-producing microbial communities using quantitative systems biology analysis

    The ALMA REBELS survey: obscured star formation in massive Lyman-break galaxies at z = 4-8 revealed by the IRX-ÎČ and M*relations

    Get PDF
    We investigate the degree of dust obscured star formation in 49 massive (log 10 ( M*/M ⊙) > 9) Lyman-break galaxies (LBGs) at z = 6.5-8 observed as part of the Atacama Large Millimeter/submillimeter Array (ALMA) Reionization Era Bright Emission Line Surv e y (REBELS) large program. By creating deep stacks of the photometric data and the REBELS ALMA measurements we determine the average rest-frame ultraviolet (UV), optical, and far-infrared (FIR) properties which reveal a significant fraction ( f obs = 0.4-0.7) of obscured star formation, consistent with previous studies. From measurements of the rest-frame UV slope, we find that the brightest LBGs at these redshifts show bluer ( ÎČ≃ -2.2) colours than expected from an extrapolation of the colour-magnitude relation found at fainter magnitudes. Assuming a modified blackbody spectral energy distribution (SED) in the FIR (with dust temperature of T d = 46 K and ÎČd = 2.0), we find that the REBELS sources are in agreement with the local 'Calzetti-like' starburst Infrared-excess (IRX)-ÎČrelation. By re-analysing the data available for 108 galaxies at z ≃ 4-6 from the ALMA Large Program to Investigate C + at Early Times (ALPINE) using a consistent methodology and assumed FIR SED, we show that from z ≃ 4-8, massive galaxies selected in the rest-frame UV have no appreciable evolution in their derived IRX-ÎČrelation. When comparing the IRX-M*relation derived from the combined ALPINE and REBELS sample to relations established at z 4 the proportion of obscured star formation is lower by a factor of ≳3 at a given a M*. Our IRX-ÎČresults are in good agreement with the high-redshift predictions of simulations and semi-analytic models for z ≃ 7 galaxies with similar stellar masses and star formation rates

    Outcomes research in the development and evaluation of practice guidelines

    Get PDF
    BACKGROUND: Practice guidelines have been developed in response to the observation that variations exist in clinical medicine that are not related to variations in the clinical presentation and severity of the disease. Despite their widespread use, however, practice guideline evaluation lacks a rigorous scientific methodology to support its development and application. DISCUSSION: Firstly, we review the major epidemiological foundations of practice guideline development. Secondly, we propose a chronic disease epidemiological model in which practice patterns are viewed as the exposure and outcomes of interest such as quality or cost are viewed as the disease. Sources of selection, information, confounding and temporal trend bias are identified and discussed. SUMMARY: The proposed methodological framework for outcomes research to evaluate practice guidelines reflects the selection, information and confounding biases inherent in its observational nature which must be accounted for in both the design and the analysis phases of any outcomes research study

    Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes

    Get PDF
    BACKGROUND: Data are lacking on the long-term effect on cardiovascular events of adding sitagliptin, a dipeptidyl peptidase 4 inhibitor, to usual care in patients with type 2 diabetes and cardiovascular disease. METHODS: In this randomized, double-blind study, we assigned 14,671 patients to add either sitagliptin or placebo to their existing therapy. Open-label use of antihyperglycemic therapy was encouraged as required, aimed at reaching individually appropriate glycemic targets in all patients. To determine whether sitagliptin was noninferior to placebo, we used a relative risk of 1.3 as the marginal upper boundary. The primary cardiovascular outcome was a composite of cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for unstable angina. RESULTS: During a median follow-up of 3.0 years, there was a small difference in glycated hemoglobin levels (least-squares mean difference for sitagliptin vs. placebo, -0.29 percentage points; 95% confidence interval [CI], -0.32 to -0.27). Overall, the primary outcome occurred in 839 patients in the sitagliptin group (11.4%; 4.06 per 100 person-years) and 851 patients in the placebo group (11.6%; 4.17 per 100 person-years). Sitagliptin was noninferior to placebo for the primary composite cardiovascular outcome (hazard ratio, 0.98; 95% CI, 0.88 to 1.09; P<0.001). Rates of hospitalization for heart failure did not differ between the two groups (hazard ratio, 1.00; 95% CI, 0.83 to 1.20; P = 0.98). There were no significant between-group differences in rates of acute pancreatitis (P = 0.07) or pancreatic cancer (P = 0.32). CONCLUSIONS: Among patients with type 2 diabetes and established cardiovascular disease, adding sitagliptin to usual care did not appear to increase the risk of major adverse cardiovascular events, hospitalization for heart failure, or other adverse events

    Global Carbon Budget 2020

    Get PDF
    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2010–2019), EFOS was 9.6 ± 0.5 GtC yr−1 excluding the cement carbonation sink (9.4 ± 0.5 GtC yr−1 when the cement carbonation sink is included), and ELUC was 1.6 ± 0.7 GtC yr−1. For the same decade, GATM was 5.1 ± 0.02 GtC yr−1 (2.4 ± 0.01 ppm yr−1), SOCEAN 2.5 ±  0.6 GtC yr−1, and SLAND 3.4 ± 0.9 GtC yr−1, with a budget imbalance BIM of −0.1 GtC yr−1 indicating a near balance between estimated sources and sinks over the last decade. For the year 2019 alone, the growth in EFOS was only about 0.1 % with fossil emissions increasing to 9.9 ± 0.5 GtC yr−1 excluding the cement carbonation sink (9.7 ± 0.5 GtC yr−1 when cement carbonation sink is included), and ELUC was 1.8 ± 0.7 GtC yr−1, for total anthropogenic CO2 emissions of 11.5 ± 0.9 GtC yr−1 (42.2 ± 3.3 GtCO2). Also for 2019, GATM was 5.4 ± 0.2 GtC yr−1 (2.5 ± 0.1 ppm yr−1), SOCEAN was 2.6 ± 0.6 GtC yr−1, and SLAND was 3.1 ± 1.2 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 409.85 ± 0.1 ppm averaged over 2019. Preliminary data for 2020, accounting for the COVID-19-induced changes in emissions, suggest a decrease in EFOS relative to 2019 of about −7 % (median estimate) based on individual estimates from four studies of −6 %, −7 %, −7 % (−3 % to −11 %), and −13 %. Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2019, but discrepancies of up to 1 GtC yr−1 persist for the representation of semi-decadal variability in CO2 fluxes. Comparison of estimates from diverse approaches and observations shows (1) no consensus in the mean and trend in land-use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent discrepancy between the different methods for the ocean sink outside the tropics, particularly in the Southern Ocean. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Friedlingstein et al., 2019; Le QuĂ©rĂ© et al., 2018b, a, 2016, 2015b, a, 2014, 2013). The data presented in this work are available at https://doi.org/10.18160/gcp-2020 (Friedlingstein et al., 2020)
    • 

    corecore