106 research outputs found

    Early-life conditions impact juvenile telomere length, but do not predict later life-history strategies or fitness in a wild vertebrate

    Get PDF
    Environmental conditions experienced during early life may have long-lasting effects on later-life phenotypes and fitness. Individuals experiencing poor early-life conditions may suffer subsequent fitness constraints. Alternatively, individuals may use a strategic “Predictive Adaptive Response” (PAR), whereby they respond—in terms of physiology or life-history strategy—to the conditions experienced in early life to maximize later-life fitness. Particularly, the Future Lifespan Expectation (FLE) PAR hypothesis predicts that when poor early-life conditions negatively impact an individual's physiological state, it will accelerate its reproductive schedule to maximize fitness during its shorter predicted life span. We aimed to measure the impact of early-life conditions and resulting fitness across individual lifetimes to test predictions of the FLE hypothesis in a wild, long-lived model species. Using a long-term individual-based dataset, we investigated how early-life conditions are linked with subsequent fitness in an isolated population of the Seychelles warbler Acrocephalus sechellensis. How individuals experience early-life environmental conditions may vary greatly, so we also tested whether telomere length—shorter telomers are a biomarker of an individual's exposure to stress—can provide an effective measure of the individual-specific impact of early-life conditions. Specifically, under the FLE hypothesis, we would expect shorter telomeres to be associated with accelerated reproduction. Contrary to expectations, shorter juvenile telomere length was not associated with poor early-life conditions, but instead with better conditions, probably as a result of faster juvenile growth. Furthermore, neither juvenile telomere length, nor other measures of early-life conditions, were associated with age of first reproduction or the number of offspring produced during early life in either sex. We found no support for the FLE hypothesis. However, for males, poor early-life body condition was associated with lower first-year survival and reduced longevity, indicating that poor early-life conditions pose subsequent fitness constraints. Our results also showed that using juvenile telomere length as a measure of early-life conditions requires caution, as it is likely to not only reflect environmental stress but also other processes such as growth

    Oxidative status and fitness components in the Seychelles warbler

    Get PDF
    1. Oxidative damage, caused by reactive oxygen species during aerobic respiration, is thought to be an important mediator of life-history trade-offs. To mitigate oxidative damage, antioxidant defence mechanisms are deployed, often at the cost of resource allocation to other body functions. Both reduced resource allocation to body functions and direct oxidative damage may decrease individual fitness, through reducing survival and/or reproductive output. 2. The oxidative costs of reproduction have gained much attention recently, but few studies have investigated the long-term consequences of oxidative damage on survival and (future) reproductive output under natural conditions. 3. Using a wild population of the cooperatively breeding Seychelles warbler (Acrocephalus sechellensis), we tested the prediction that high levels of reactive oxygen species, or high antioxidant investments to avoid oxidative damage, have fitness consequences because they reduce survival and/or reproductive output. 4. We found that individuals with higher circulating non-enzymatic antioxidant capacity had a lower probability of surviving until the next year. However, neither current reproductive output, nor future reproductive output in the surviving individuals, was associated with circulating non-enzymatic antioxidant capacity or oxidative damage. 5. The negative relationship between antioxidant capacity and survival that we observed concurs with the findings of an extensive comparative study on birds, however the mechanisms underlying this association remain to be resolved

    Does reproduction cause oxidative stress? An open question

    Get PDF
    There has been substantial recent interest in the possible role of oxidative stress as a mechanism underlying life-history trade-offs, particularly with regard to reproductive costs. Several recent papers have found no evidence that reproduction increases oxidative damage and so have questioned the basis of the hypothesis that oxidative damage mediates the reproduction–lifespan trade-off. However, we suggest here that the absence of the predicted relationships could be due to a fundamental problem in the design of all of the published empirical studies, namely a failure to manipulate reproductive effort. We conclude by suggesting experimental approaches that might provide a more conclusive test of the hypothesis

    Island invasives: scaling up to meet the challenge

    Get PDF
    Management and eradication techniques for invasive alien birds remain in their infancy compared to invasive mammal control methods, and there are still relatively few examples of successful avian eradications. Since 2011, five separate eradication programmes for invasive birds have been conducted on three islands by the Seychelles Islands Foundation (SIF). Target species were prioritised according to their threat level to the native biodiversity of the UNESCO World Heritage Sites of the Seychelles, Aldabra Atoll and Vallée de Mai, which SIF is responsible for managing and protecting. Red-whiskered bulbuls (Pycnonotus jocosus) and Madagascar fodies (Foudia madagascariensis) occurred on Assumption, the closest island to Aldabra, which, at the time, had no known introduced bird species. The growing population of ring-necked parakeets (Psittacula krameri) on Mahé posed a threat to endemic Seychelles black parrots (Coracopsis barklyi) on Praslin where the Vallée de Mai forms their core breeding habitat. In 2012, red-whiskered bulbuls and Madagascar fodies were detected on Aldabra, so an additional eradication was started. All eradications used a combination of mist-netting and shooting. The intensive part of each eradication lasted three years or less. On Assumption, 5,279 red-whiskered bulbuls and 3,291 Madagascar fodies were culled; on Mahé, 545 parakeets were culled; and on Aldabra 262 Madagascar fodies and one red-whiskered bulbul were culled. Each programme underwent 1–2 years of follow-up monitoring before eradication was confirmed, and four of the five eradications have been successful so far. None of these species had previously been eradicated in large numbers from other islands so the successes substantially advance this field of invasive species management. The challenges and insights of these eradications also provide unique learning opportunities for other invasive avian eradications

    Telomere length reveals cumulative individual and transgenerational inbreeding effects in a passerine bird

    Get PDF
    Inbreeding results in more homozygous offspring that should suffer reduced fitness, but it can be difficult to quantify these costs for several reasons. First, inbreeding depression may vary with ecological or physiological stress and only be detectable over long time periods. Second, parental homozygosity may indirectly affect offspring fitness, thus confounding analyses that consider offspring homozygosity alone. Finally, measurement of inbreeding coefficients, survival and reproductive success may often be too crude to detect inbreeding costs in wild populations. Telomere length provides a more precise measure of somatic costs, predicts survival in many species and should reflect differences in somatic condition that result from varying ability to cope with environmental stressors. We studied relative telomere length in a wild population of Seychelles warblers (Acrocephalus sechellensis) to assess the lifelong relationship between individual homozygosity, which reflects genome-wide inbreeding in this species, and telomere length. In juveniles, individual homozygosity was negatively associated with telomere length in poor seasons. In adults, individual homozygosity was consistently negatively related to telomere length, suggesting the accumulation of inbreeding depression during life. Maternal homozygosity also negatively predicted offspring telomere length. Our results show that somatic inbreeding costs are environmentally dependent at certain life stages but may accumulate throughout life

    Stress assessment in captive greylag geese (<em>Anser anser</em>)

    Get PDF
    Chronic stress—or, more appropriately, “allostatic overload”—may be physiologically harmful and can cause death in the most severe cases. Animals in captivity are thought to be particularly vulnerable to allostatic overload due to artificial housing and group makeup. Here we attempted to determine if captive greylag geese (Anser anser), housed lifelong in captivity, showed elevated levels of immunoreactive corticosterone metabolites (CORT) and ectoparasites in dropping samples as well as some hematological parameters (hematocrit, packed cell volume, total white blood cell count [TWBC], and heterophil:lymphocyte ratio [H:L]). All of these have been measured as indicators of chronic stress. Furthermore, we correlated the various stress parameters within individuals. Captive geese showed elevated values of CORT and ectoparasites relative to a wild population sampled in the vicinity of the area where the captive flock is held. The elevated levels, however, were by no means at a pathological level and fall well into the range of other published values in wild greylag geese. We found no correlations between any of the variables measured from droppings with any of the ones collected from blood. Among the blood parameters, only the H:L negatively correlated with TWBC. We examine the problem of inferring allostatic overload when measuring only 1 stress parameter, as there is no consistency between various measurements taken. We discuss the different aspects of each of the parameters measured and the extensive individual variation in response to stress as well as the timing at which different systems respond to a stressor and what is actually measured at the time of data collection. We conclude that measuring only 1 stress parameter often is insufficient to evaluate the well-being of both wild and captively housed animals and that collecting behavioral data on stress might be a suitable addition

    The impact of conservation-driven translocations on blood parasite prevalence in the Seychelles warbler

    Get PDF
    Introduced populations often lose the parasites they carried in their native range, but little is known about which processes may cause parasite loss during host movement. Conservation-driven translocations could provide an opportunity to identify the mechanisms involved. Using 3,888 blood samples collected over 22 years, we investigated parasite prevalence in populations of Seychelles warblers (Acrocephalus sechellensis) after individuals were translocated from Cousin Island to four new islands (Aride, Cousine, Denis and FrĂ©gate). Only a single parasite (Haemoproteus nucleocondensus) was detected on Cousin (prevalence = 52%). This parasite persisted on Cousine (prevalence = 41%), but no infection was found in individuals hatched on Aride, Denis or FrĂ©gate. It is not known whether the parasite ever arrived on Aride, but it has not been detected there despite 20 years of post-translocation sampling. We confirmed that individuals translocated to Denis and FrĂ©gate were infected, with initial prevalence similar to Cousin. Over time, prevalence decreased on Denis and FrĂ©gate until the parasite was not found on Denis two years after translocation, and was approaching zero prevalence on FrĂ©gate. The loss (Denis) or decline (FrĂ©gate) of H. nucleocondensus, despite successful establishment of infected hosts, must be due to factors affecting parasite transmission on these islands
    • 

    corecore