25 research outputs found

    Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen

    Get PDF
    The effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number of possible combinations is vast, necessitating data-driven approaches to find optimal patient-specific treatments. Here we report AstraZeneca’s large drug combination dataset, consisting of 11,576 experiments from 910 combinations across 85 molecularly characterized cancer cell lines, and results of a DREAM Challenge to evaluate computational strategies for predicting synergistic drug pairs and biomarkers. 160 teams participated to provide a comprehensive methodological development and benchmarking. Winning methods incorporate prior knowledge of drug-target interactions. Synergy is predicted with an accuracy matching biological replicates for >60% of combinations. However, 20% of drug combinations are poorly predicted by all methods. Genomic rationale for synergy predictions are identified, including ADAM17 inhibitor antagonism when combined with PIK3CB/D inhibition contrasting to synergy when combined with other PI3K-pathway inhibitors in PIK3CA mutant cells.Peer reviewe

    Towards predictive resistance models for agrochemicals by combining chemical and protein similarity via proteochemometric modelling

    Get PDF
    Resistance to pesticides is an increasing problem in agriculture. Despite practices such as phased use and cycling of ‘orthogonally resistant’ agents, resistance remains a major risk to national and global food security. To combat this problem, there is a need for both new approaches for pesticide design, as well as for novel chemical entities themselves. As summarized in this opinion article, a technique termed ‘proteochemometric modelling’ (PCM), from the field of chemoinformatics, could aid in the quantification and prediction of resistance that acts via point mutations in the target proteins of an agent. The technique combines information from both the chemical and biological domain to generate bioactivity models across large numbers of ligands as well as protein targets. PCM has previously been validated in prospective, experimental work in the medicinal chemistry area, and it draws on the growing amount of bioactivity information available in the public domain. Here, two potential applications of proteochemometric modelling to agrochemical data are described, based on previously published examples from the medicinal chemistry literature

    Benchmarking of protein descriptor sets in proteochemometric modeling (part 1): comparative study of 13 amino acid descriptor sets

    Get PDF
    BACKGROUND: While a large body of work exists on comparing and benchmarking of descriptors of molecular structures, a similar comparison of protein descriptor sets is lacking. Hence, in the current work a total of 13 different protein descriptor sets have been compared with respect to their behavior in perceiving similarities between amino acids. The descriptor sets included in the study are Z-scales (3 variants), VHSE, T-scales, ST-scales, MS-WHIM, FASGAI and BLOSUM, and a novel protein descriptor set termed ProtFP (4 variants). We investigate to which extent descriptor sets show collinear as well as orthogonal behavior via principal component analysis (PCA). RESULTS: In describing amino acid similarities, MSWHIM, T-scales and ST-scales show related behavior, as do the VHSE, FASGAI, and ProtFP (PCA3) descriptor sets. Conversely, the ProtFP (PCA5), ProtFP (PCA8), Z-Scales (Binned), and BLOSUM descriptor sets show behavior that is distinct from one another as well as both of the clusters above. Generally, the use of more principal components (>3 per amino acid, per descriptor) leads to a significant differences in the way amino acids are described, despite that the later principal components capture less variation per component of the original input data. CONCLUSION: In this work a comparison is provided of how similar (and differently) currently available amino acids descriptor sets behave when converting structure to property space. The results obtained enable molecular modelers to select suitable amino acid descriptor sets for structure-activity analyses, e.g. those showing complementary behavior
    corecore