84 research outputs found

    Modelling user behaviour at a stochastic road traffic bottleneck

    Get PDF
    Congestion in road traffic has received substantial attention in the research literature. One popular approach to modelling congesting and user response is the seminal bottleneck model introduced by Vickrey [25]. Here traffic is modelled as a fluid, and all travellers are subject to cost for waiting, early departure, and late departure. The travellers' response to the congestion is captured by assuming that they arrive at the bottleneck according to a Wardrop equilibrium, meaning that no traveller can decrease its costs by shifting its arrival time. This model and its extensions have been extensively studied in the research literature, but ignore the fact that road traffic consists of individual travellers with uncertain arrival time and speed. While the fluid approach used in the Vickrey model may be correct when the number of travellers is large, it fails to yield accurate predictions for a small number of travellers.In the present paper we propose a stochastic version of the bottleneck model, that can also handle smaller number of travellers. We discuss the error made by the fluid approximation, and show that the Wardrop equilibrium results in highly varying costs when applied in the more realistic setting with stochasticity. We then discuss an algorithm for numerically computing the equilibrium arrival rate for the stochastic bottleneck model, and propose a closed-form estimation for this equilibrium. This can be used for future studies into the effect of stochasticity in these bottleneck models.</p

    Network partitioning on time-dependent origin-destination electronic trace data

    Get PDF
    In this study, we identify spatial regions based on an empirical data set consisting of time-dependent origin-destination (OD) pairs. These OD pairs consist of electronic traces collected from smartphone data by Google in the Amsterdam metropolitan region and is aggregated by the volume of trips per hour at neighbourhood level. By means of community detection, we examine the structure of this empirical data set in terms of connectedness. We show that we can distinguish spatially connected regions when we use a performance metric called modularity and the trip directionality is incorporated. From this, we proceed to analyse variations in the partitions that arise due to the non-optimal greedy optimisation method. We use a method known as ensemble learning to combine these variations by means of the overlap in community partitions. Ultimately, the combined partition leads to a more consistent result when evaluated again, compared to the individual partitions. Analysis of the partitions gives insights with respect to connectivity and spatial travel patterns, thereby supporting policy makers in their decisions for future infra structural adjustments

    Novel Point Mutation in the Extracellular Domain of the Granulocyte Colony-Stimulating Factor (G-Csf) Receptor in a Case of Severe Congenital Neutropenia Hyporesponsive to G-Csf Treatment

    Get PDF
    Severe congenital neutropenia (SCN) is a heterogeneous condition characterized by a drastic reduction in circulating neutrophils and a maturation arrest of myeloid progenitor cells in the bone marrow. Usually this condition can be successfully treated with granulocyte colony-stimulating factor (G-CSF). Here we describe the identification of a novel point mutation in the extracellular domain of the G-CSF receptor (G-CSF-R) in an SCN patient who failed to respond to G-CSF treatment. When this mutant G-CSF-R was expressed in myeloid cells, it was defective in both proliferation and survival signaling. This correlated with diminished activation of the receptor complex as determined by signal transducer and activator of transcription (STAT) activation, although activation of STAT5 was more affected than STAT3. Interestingly, the mutant receptor showed normal affinity for ligand, but a reduced number of ligand binding sites compared with the wild-type receptor. This suggests that the mutation in the extracellular domain affects ligand–receptor complex formation with severe consequences for intracellular signal transduction. Together these data add to our understanding of the mechanisms of cytokine receptor signaling, emphasize the role of GCSFR mutations in the etiology of SCN, and implicate such mutations in G-CSF hyporesponsiveness

    Novel point mutation in the extracellular domain of the granulocyte colony-stimulating factor (G-CSF) receptor in a case of severe congenital neutropenia hyporesponsive to G-CSF treatment

    Get PDF
    Severe congenital neutropenia (SCN) is a heterogeneous condition characterized by a drastic reduction in circulating neutrophils and a maturation arrest of myeloid progenitor cells in the bone marrow. Usually this condition can be successfully treated with granulocyte colony-stimulating factor (G-CSF). Here we describe the identification of a novel point mutation in the extracellular domain of the G-CSF receptor (G-CSF-R) in an SCN patient who failed to respond to G-CSF treatment. When this mutant G-CSF-R was expressed in myeloid cells, it was defective in both proliferation and survival signaling. This correlated with diminished activation of the receptor complex as determined by signal transducer and activator of transcription (STAT) activation, although activation of STAT5 was more affected than STAT3. Interestingly, the mutant receptor showed normal affinity for ligand, but a reduced number of ligand binding sites compared with the wild-type receptor. This suggests that the mutation in the extracellular domain affects ligand-receptor complex formation with severe consequences for intracellular signal transduction. Together these data add to our understanding of the mechanisms of cytokine receptor signaling, emphasize the role of GCSFR mutations in the etiology of SCN, and implicate such mutations in G-CSF hyporesponsiveness

    A supramolecular approach for liver radioembolization

    Get PDF
    Hepatic radioembolization therapies can suffer from discrepancies between diagnostic planning (scout-scan) and the therapeutic delivery itself, resulting in unwanted side-effects such as pulmonary shunting. We reasoned that a nanotechnology-based pre-targeting strategy could help overcome this shortcoming by directly linking pre-interventional diagnostics to the local delivery of therapy. Methods: The host-guest interaction between adamantane and cyclodextrin was employed in an in vivo pre-targeting set-up. Adamantane (guest)-functionalized macro albumin aggregates (MAA-Ad; d = 18 μm) and (radiolabeled) Cy5 and β-cyclodextrin (host)-containing PIBMA polymers (99mTc-Cy50.5CD10PIBMA39; MW ~ 18.8 kDa) functioned as the reactive pair. Following liver or lung embolization with (99mTc)-MAA-Ad or (99mTc)-MAA (controls), the utility of the pre-targeting concept was evaluated after intravenous administration of 99mTc-Cy50.5CD10PIBMA39. Results: Interactions between MAA-Ad and Cy50.5CD10PIBMA39 could be monitored in solution using confocal microscopy and were quantified by radioisotope-based binding experiments. In vivo the accumulation of the MAA-Ad particles in the liver or lungs yielded an approximate ten-fold increase in accumulation of 99mTc-Cy50.5CD10PIBMA39 in those organs (16.2 %ID/g and 10.5 %ID/g, respectively) compared to the control. Pre-targeting with MAA alone was shown to be only half as efficient. Uniquely, for the first time, this data demonstrates that the formation of supramolecular interactions between cyclodextrin and adamantane can be used to drive complex formation in the chemically challenging in vivo environment. Conclusion: The in vivo distribution pattern of the cyclodextrin host could be guided by the pre-administration of the adamantane guest, thereby creating a direct link between the scout-scan (MAA-Ad) and delivery of therapy.</p

    Trial Participation in Neurodegenerative Diseases: Barriers and Facilitators: A Systematic Review and Meta-Analysis

    Get PDF
    BACKGROUND AND OBJECTIVES: Clinical trials in neurodegenerative diseases often encounter selective enrollment and under-representation of certain patient populations. This delays drug development and substantially limits the generalizability of clinical trial results. To inform recruitment and retention strategies, and to better understand the generalizability of clinical trial populations, we investigated which factors drive participation. METHODS: We reviewed the literature systematically to identify barriers to and facilitators of trial participation in 4 major neurodegenerative disease areas: Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, and Huntington disease. Inclusion criteria included original research articles published in a peer-reviewed journal and evaluating barriers to and/or facilitators of participation in a clinical trial with a drug therapy (either symptomatic or disease-modifying). The Critical Appraisal Skills Program checklist for qualitative studies was used to assess and ensure the quality of the studies. Qualitative thematic analyses were employed to identify key enablers of trial participation. Subsequently, we pooled quantitative data of each enabler using meta-analytical models. RESULTS: Overall, we identified 36 studies, enrolling a cumulative sample size of 5,269 patients, caregivers, and health care professionals. In total, the thematic analysis resulted in 31 unique enablers of trial participation; the key factors were patient-related (own health benefit and altruism), study-related (treatment and study burden), and health care professional-related (information availability and patient-physician relationship). When meta-analyzed across studies, responders reported that the reason to participate was mainly driven by (1) the relationship with clinical staff (70% of the respondents; 95% CI 53%-83%), (2) the availability of study information (67%, 95% CI 38%-87%), and (3) the use or absence of a placebo or sham-control arm (53% 95% CI 32%-72%). There was, however, significant heterogeneity between studies (all p < 0.001). DISCUSSION: We have provided a comprehensive list of reasons why patients participate in clinical trials for neurodegenerative diseases. These results may help to increase participation rates, better inform patients, and facilitate patient-centric approaches, thereby potentially reducing selection mechanisms and improving generalizability of trial results

    A CD8+ T cell immune evasion protein specific to Epstein-Barr virus and its close relatives in Old World primates

    Get PDF
    γ1-Herpesviruses such as Epstein-Barr virus (EBV) have a unique ability to amplify virus loads in vivo through latent growth-transforming infection. Whether they, like α- and β-herpesviruses, have been driven to actively evade immune detection of replicative (lytic) infection remains a moot point. We were prompted to readdress this question by recent work (Pudney, V.A., A.M. Leese, A.B. Rickinson, and A.D. Hislop. 2005. J. Exp. Med. 201:349–360; Ressing, M.E., S.E. Keating, D. van Leeuwen, D. Koppers-Lalic, I.Y. Pappworth, E.J.H.J. Wiertz, and M. Rowe. 2005. J. Immunol. 174:6829–6838) showing that, as EBV-infected cells move through the lytic cycle, their susceptibility to EBV-specific CD8+ T cell recognition falls dramatically, concomitant with a reductions in transporter associated with antigen processing (TAP) function and surface human histocompatibility leukocyte antigen (HLA) class I expression. Screening of genes that are unique to EBV and closely related γ1-herpesviruses of Old World primates identified an early EBV lytic cycle gene, BNLF2a, which efficiently blocks antigen-specific CD8+ T cell recognition through HLA-A–, HLA-B–, and HLA-C–restricting alleles when expressed in target cells in vitro. The small (60–amino acid) BNLF2a protein mediated its effects through interacting with the TAP complex and inhibiting both its peptide- and ATP-binding functions. Furthermore, this targeting of the major histocompatibility complex class I pathway appears to be conserved among the BNLF2a homologues of Old World primate γ1-herpesviruses. Thus, even the acquisition of latent cycle genes endowing unique growth-transforming ability has not liberated these agents from evolutionary pressure to evade CD8+ T cell control over virus replicative foci

    Tolerability of concurrent external beam radiotherapy and [ 177Lu]Lu-PSMA-617 for node-positive prostate cancer in treatment naĂŻve patients, phase I study (PROQURE-I trial).

    Get PDF
    BACKGROUND: Prostate cancer patients with locoregional lymph node disease at diagnosis (N1M0) still have a limited prognosis despite the improvements provided by aggressive curative intent multimodal locoregional external beam radiation therapy (EBRT) with systemic androgen deprivation therapy (ADT). Although some patients can be cured and the majority of patients have a long survival, the 5-year biochemical failure rate is currently 29-47%. [ 177Lu]Lu-PSMA-617 has shown impressive clinical and biochemical responses with low toxicity in salvage setting in metastatic castration-resistant prostate cancer. This study aims to explore the combination of standard EBRT and ADT complemented with a single administration of [ 177Lu]Lu-PSMA-617 in curative intent treatment for N1M0 prostate cancer. Hypothetically, this combined approach will enhance EBRT to better control macroscopic tumour localizations, and treat undetected microscopic disease locations inside and outside EBRT fields. METHODS: The PROQURE-I study is a multicenter prospective phase I study investigating standard of care treatment (7 weeks EBRT and 3 years ADT) complemented with one concurrent cycle (three, six, or nine GBq) of systemic [ 177Lu]Lu-PSMA-617 administered in week two of EBRT. A maximum of 18 patients with PSMA-positive N1M0 prostate cancer will be included. The tolerability of adding [ 177Lu]Lu-PSMA-617 will be evaluated using a Bayesian Optimal Interval (BOIN) dose-escalation design. The primary objective is to determine the maximum tolerated dose (MTD) of a single cycle [ 177Lu]Lu-PSMA-617 when given concurrent with EBRT + ADT, defined as the occurrence of Common Terminology Criteria for Adverse Events (CTCAE) v 5.0 grade three or higher acute toxicity. Secondary objectives include: late toxicity at 6 months, dosimetric assessment, preliminary biochemical efficacy at 6 months, quality of life questionnaires, and pharmacokinetic modelling of [ 177Lu]Lu-PSMA-617. DISCUSSION: This is the first prospective study to combine EBRT and ADT with [ 177Lu]Lu-PSMA-617 in treatment naïve men with N1M0 prostate cancer, and thereby explores the novel application of [ 177Lu]Lu-PSMA-617 in curative intent treatment. It is considered likely that this study will confirm tolerability as the combined toxicity of these treatments is expected to be limited. Increased efficacy is considered likely since both individual treatments have proven high anti-tumour effect as mono-treatments. TRIAL REGISTRATION: ClinicalTrials, NCT05162573 . Registered 7 October 2021

    An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers

    Get PDF
    Introduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers. Methods: We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals. Results: We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk. Conclusions: This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.Peer reviewe
    • …
    corecore