78 research outputs found

    Modelling user behaviour at a stochastic road traffic bottleneck

    Get PDF
    Congestion in road traffic has received substantial attention in the research literature. One popular approach to modelling congesting and user response is the seminal bottleneck model introduced by Vickrey [25]. Here traffic is modelled as a fluid, and all travellers are subject to cost for waiting, early departure, and late departure. The travellers' response to the congestion is captured by assuming that they arrive at the bottleneck according to a Wardrop equilibrium, meaning that no traveller can decrease its costs by shifting its arrival time. This model and its extensions have been extensively studied in the research literature, but ignore the fact that road traffic consists of individual travellers with uncertain arrival time and speed. While the fluid approach used in the Vickrey model may be correct when the number of travellers is large, it fails to yield accurate predictions for a small number of travellers.In the present paper we propose a stochastic version of the bottleneck model, that can also handle smaller number of travellers. We discuss the error made by the fluid approximation, and show that the Wardrop equilibrium results in highly varying costs when applied in the more realistic setting with stochasticity. We then discuss an algorithm for numerically computing the equilibrium arrival rate for the stochastic bottleneck model, and propose a closed-form estimation for this equilibrium. This can be used for future studies into the effect of stochasticity in these bottleneck models.</p

    Network partitioning on time-dependent origin-destination electronic trace data

    Get PDF
    In this study, we identify spatial regions based on an empirical data set consisting of time-dependent origin-destination (OD) pairs. These OD pairs consist of electronic traces collected from smartphone data by Google in the Amsterdam metropolitan region and is aggregated by the volume of trips per hour at neighbourhood level. By means of community detection, we examine the structure of this empirical data set in terms of connectedness. We show that we can distinguish spatially connected regions when we use a performance metric called modularity and the trip directionality is incorporated. From this, we proceed to analyse variations in the partitions that arise due to the non-optimal greedy optimisation method. We use a method known as ensemble learning to combine these variations by means of the overlap in community partitions. Ultimately, the combined partition leads to a more consistent result when evaluated again, compared to the individual partitions. Analysis of the partitions gives insights with respect to connectivity and spatial travel patterns, thereby supporting policy makers in their decisions for future infra structural adjustments

    Novel Point Mutation in the Extracellular Domain of the Granulocyte Colony-Stimulating Factor (G-Csf) Receptor in a Case of Severe Congenital Neutropenia Hyporesponsive to G-Csf Treatment

    Get PDF
    Severe congenital neutropenia (SCN) is a heterogeneous condition characterized by a drastic reduction in circulating neutrophils and a maturation arrest of myeloid progenitor cells in the bone marrow. Usually this condition can be successfully treated with granulocyte colony-stimulating factor (G-CSF). Here we describe the identification of a novel point mutation in the extracellular domain of the G-CSF receptor (G-CSF-R) in an SCN patient who failed to respond to G-CSF treatment. When this mutant G-CSF-R was expressed in myeloid cells, it was defective in both proliferation and survival signaling. This correlated with diminished activation of the receptor complex as determined by signal transducer and activator of transcription (STAT) activation, although activation of STAT5 was more affected than STAT3. Interestingly, the mutant receptor showed normal affinity for ligand, but a reduced number of ligand binding sites compared with the wild-type receptor. This suggests that the mutation in the extracellular domain affects ligand–receptor complex formation with severe consequences for intracellular signal transduction. Together these data add to our understanding of the mechanisms of cytokine receptor signaling, emphasize the role of GCSFR mutations in the etiology of SCN, and implicate such mutations in G-CSF hyporesponsiveness

    Novel point mutation in the extracellular domain of the granulocyte colony-stimulating factor (G-CSF) receptor in a case of severe congenital neutropenia hyporesponsive to G-CSF treatment

    Get PDF
    Severe congenital neutropenia (SCN) is a heterogeneous condition characterized by a drastic reduction in circulating neutrophils and a maturation arrest of myeloid progenitor cells in the bone marrow. Usually this condition can be successfully treated with granulocyte colony-stimulating factor (G-CSF). Here we describe the identification of a novel point mutation in the extracellular domain of the G-CSF receptor (G-CSF-R) in an SCN patient who failed to respond to G-CSF treatment. When this mutant G-CSF-R was expressed in myeloid cells, it was defective in both proliferation and survival signaling. This correlated with diminished activation of the receptor complex as determined by signal transducer and activator of transcription (STAT) activation, although activation of STAT5 was more affected than STAT3. Interestingly, the mutant receptor showed normal affinity for ligand, but a reduced number of ligand binding sites compared with the wild-type receptor. This suggests that the mutation in the extracellular domain affects ligand-receptor complex formation with severe consequences for intracellular signal transduction. Together these data add to our understanding of the mechanisms of cytokine receptor signaling, emphasize the role of GCSFR mutations in the etiology of SCN, and implicate such mutations in G-CSF hyporesponsiveness

    A CD8+ T cell immune evasion protein specific to Epstein-Barr virus and its close relatives in Old World primates

    Get PDF
    γ1-Herpesviruses such as Epstein-Barr virus (EBV) have a unique ability to amplify virus loads in vivo through latent growth-transforming infection. Whether they, like α- and β-herpesviruses, have been driven to actively evade immune detection of replicative (lytic) infection remains a moot point. We were prompted to readdress this question by recent work (Pudney, V.A., A.M. Leese, A.B. Rickinson, and A.D. Hislop. 2005. J. Exp. Med. 201:349–360; Ressing, M.E., S.E. Keating, D. van Leeuwen, D. Koppers-Lalic, I.Y. Pappworth, E.J.H.J. Wiertz, and M. Rowe. 2005. J. Immunol. 174:6829–6838) showing that, as EBV-infected cells move through the lytic cycle, their susceptibility to EBV-specific CD8+ T cell recognition falls dramatically, concomitant with a reductions in transporter associated with antigen processing (TAP) function and surface human histocompatibility leukocyte antigen (HLA) class I expression. Screening of genes that are unique to EBV and closely related γ1-herpesviruses of Old World primates identified an early EBV lytic cycle gene, BNLF2a, which efficiently blocks antigen-specific CD8+ T cell recognition through HLA-A–, HLA-B–, and HLA-C–restricting alleles when expressed in target cells in vitro. The small (60–amino acid) BNLF2a protein mediated its effects through interacting with the TAP complex and inhibiting both its peptide- and ATP-binding functions. Furthermore, this targeting of the major histocompatibility complex class I pathway appears to be conserved among the BNLF2a homologues of Old World primate γ1-herpesviruses. Thus, even the acquisition of latent cycle genes endowing unique growth-transforming ability has not liberated these agents from evolutionary pressure to evade CD8+ T cell control over virus replicative foci

    An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers

    Get PDF
    Introduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers. Methods: We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals. Results: We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk. Conclusions: This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.Peer reviewe

    Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk

    Get PDF
    BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7Ă—10-8, HR = 1.14, 95% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4Ă—10-8, HR = 1.27, 95% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4Ă—10-8, HR = 1.20, 95% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific associat

    SUGAR-DIP trial: Oral medication strategy versus insulin for diabetes in pregnancy, study protocol for a multicentre, open-label, non-inferiority, randomised controlled trial

    Get PDF
    Introduction In women with gestational diabetes mellitus (GDM) requiring pharmacotherapy, insulin was the established first-line treatment. More recently, oral glucose lowering drugs (OGLDs) have gained popularity as a patient-friendly, less expensive and safe alternative. Monotherapy with metformin or glibenclamide (glyburide) is incorporated in several international guidelines. In women who do not reach sufficient glucose control with OGLD monotherapy, usually insulin is added, either with or without continuation of OGLDs. No reliable data from clinical trials, however, are available on the effectiveness of a treatment strategy using all three agents, metformin, glibenclamide and insulin, in a stepwise approach, compared with insulin-only therapy for improving pregnancy outcomes. In this trial, we aim to assess the clinical effectiveness, cost-effectiveness and patient experience of a stepwise combined OGLD treatment protocol, compared with conventional insulin-based therapy for GDM. Methods The SUGAR-DIP trial is an open-label, multicentre randomised controlled non-inferiority trial. Participants are women with GDM who do not reach target glycaemic control with modification of diet, between 16 and 34 weeks of gestation. Participants will be randomised to either treatment with OGLDs, starting with metformin and supplemented as needed with glibenclamide, or randomised to treatment with insulin. In women who do not reach target glycaemic control with combined metformin and glibenclamide, glibenclamide will be substituted with insulin, while continuing metformin. The primary outcome will be the incidence of large-for-gestational-age infants (birth weight >90th percentile). Secondary outcome measures are maternal diabetes-related endpoints, obstetric complications, neonatal complications and cost-effectiveness analysis. Outcomes will be analysed according to the intention-to-treat principle. Ethics and dissemination The study protocol was approved by the Ethics Committee of the Utrecht University Medical Centre. Approval by the boards of management for all participating hospitals will be obtained. Trial results will be submitted for publication in peer-reviewed journals

    An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers

    Get PDF
    Abstract Introduction Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers. Methods We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals. Results We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk. Conclusions This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects
    • …
    corecore