
Personal and Ubiquitous Computing
https://doi.org/10.1007/s00779-019-01208-1

ORIGINAL ARTICLE

Network partitioning on time-dependent origin-destination
electronic trace data

Daphne van Leeuwen1 · Joost W. Bosman2 · Elenna R. Dugundji3

Received: 23 July 2018 / Accepted: 15 February 2019
© The Author(s) 2019

Abstract
In this study, we identify spatial regions based on an empirical data set consisting of time-dependent origin-destination (OD)
pairs. These OD pairs consist of electronic traces collected from smartphone data by Google in the Amsterdam metropolitan
region and is aggregated by the volume of trips per hour at neighbourhood level. By means of community detection, we
examine the structure of this empirical data set in terms of connectedness. We show that we can distinguish spatially
connected regions when we use a performance metric called modularity and the trip directionality is incorporated. From
this, we proceed to analyse variations in the partitions that arise due to the non-optimal greedy optimisation method. We
use a method known as ensemble learning to combine these variations by means of the overlap in community partitions.
Ultimately, the combined partition leads to a more consistent result when evaluated again, compared to the individual
partitions. Analysis of the partitions gives insights with respect to connectivity and spatial travel patterns, thereby supporting
policy makers in their decisions for future infra structural adjustments.

1 Introduction

In a densely populated, compact city as Amsterdam it is of
great importance to understand the travel patterns of people,
as congestion in the city centre is a main concern. With
the rise of ubiquitous sensor data, detailed information with
respect to mobility is available. Not only can we analyse the
infrastructure performance more accurately, it also opens
up new opportunities to for estimation, integration and
validation of existing models.

For this study, we had access to origin-destination (OD)
intensities for the metro region of Amsterdam. These
ODs represent neighbourhoods within Amsterdam, and
municipalities for the metro region of Amsterdam. The OD
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intensities are based on electronic trace data collected from
smartphone data by Google. These traces are aggregated
at neighbourhood and municipal level by their volume of
trips on an hourly basis for a 6-month period of time. We
obtained these OD intensities by a project from Google
called ‘Better Cities’ in which they provided this data based
on the research proposals they received.

The aim of this research is to analyse whether travel
patterns in Amsterdam can be aggregated into high-level
patterns to detect flow trends in both space and time. In
the literature, this is called community detection, where
the high-level patterns are identified as communities. The
results of such an approach can be exploited to analyse
major flow patterns between areas based on the obtained
communities. Moreover, the obtained communities can be
used to support practitioners with strategic decisions, for
example to identify or justify the expansion of public
transport between specific areas.

We apply clustering to identify communities based on
historical travel data. Clustering or graph partitioning is
based on nodes that share common properties or behave
in a similar manner. In this context, community detection
is used to group nodes based on the edge properties only.
We thereby want to identify the typical traffic behaviour in
Amsterdam from both a temporal and spatial point of view.

In the literature, a wide range of community detections
algorithms exist, as well as the number of metrics to evaluate
the partition quality of the detection algorithms. A fairly
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complete review of this topic is given in [12]. By far,
the most popular metric to determine the performance of
the resulting clusters is called modularity, introduced by
[20]. Modularity is a metric to measure the strength of a
network partitioned into communities based on the intra-
inter community edge weight, i.e., the more weight captured
within each community compared to the weight between
communities, the stronger the connection and the larger the
modularity value. The problem of finding the partitioning
of a graph with the maximum modularity value is known
to be NP-complete [7]. Various heuristics exist to optimise
the modularity value. An overview of these methods can be
found in [12, Chapter 6].

In a recent study, spatial clusters based on telephone
calls have been examined by Blondel et al. [6], who
developed an efficient heuristic procedure to find a partition
of the network that maximises the modularity known as the
Louvain algorithm. In a similar study, this algorithm has
been applied to telephone data in Great Britain by Ratti et al.
[23]. For this study, a geographical area is partitioned into
small regions. These regions are translated to a graph where
the regions are represented by nodes, and the intensity of
phone calls by edges. In both of these papers, the resulting
communities obtained from the clustering procedure are
spatially connected, while no spatial characteristics are
considered in the algorithm. Moreover, both these datasets
consist of a large number of connections between the nodes
of the network. This algorithm is of interest to us, as the
geographical component and densely connectedness both
apply to our dataset.

Another feature that is included in our dataset is direc-
tionality of the trips. In the original Louvain algorithm [5],
analysis including directionality is not applied. However,
the method is easily extendable to allow for directional-
ity, as is explained in [10]. We will show that the Louvain

method produces very good results to determine clusters
based on origin-destination pairs in the city of Amsterdam
when directionality is included.

We extend the analysis for different time slices of
the data (i.e., weekday, months, etcetera), and show that
this results in variations in the obtained communities.
However, the comparison is not straightforward as the
Louvain method generates variations between each run for
the same time slice as well. However, the efficiency of
the Louvain heuristic with minimal computational effort
allows for a more elaborative analysis on the variations
between partitions of a network. To this end, we use a
technique known as ensemble learning to obtain a more
consistent partition, i.e., less variation between partitions
resulting from the same algorithmic procedure. In [13], they
explain this procedure applied to graph partitioning. A more
consistent partition of the community structure for a specific
time slice allows for a better comparison of partitions of
other time slices.

The remainder of this paper is organised as follows.
In Section 2, we give a detailed description of the data
and specify the filter and preprocessing steps used for the
model, which we introduce in Section 3. The preliminary
results are then given in Section 4. From there, we
proceed to characterise the obtained communities in terms
of connectivity strength in Section 5 and consistency in
Section 6. We conclude in Section 7.

2 Data analysis

Before we move to the step of clustering, we first give a
more detailed description of the data. By applying some
preliminary aggregation steps, we obtain initial insights into
the value of the data. Some of these confirm assumptions,

(a)The greater metropolitan area (b)The municipality

Fig. 1 Neighbourhood and district level division of the greater metropolitan area of Amsterdam
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Table 1 Example data of the
Google data set Origin Destination Start interval (sec) End interval (sec) Weight

438 310 1468918800 1468922400 0.00036576445563696325

438 310 1473652800 1473656400 0.00036576445563696325

438 310 1471942800 1471946400 0.0007315289112739265

438 2 1470542400 1470546000 0.0007315289112739265

438 403 1470542400 1470546000 0.00036576445563696325

such as daily fluctuations in travel density, while they
also reveal some deficiencies of the data. Moreover, these
preliminary results illustrate the motivation to direct the
research of this paper to the use of clustering methods.

2.1 Data specification

The travel data used for our analysis is based on travel
movements registered by Google on Android phones for
the Amsterdam metro region. This data was obtained by an
inquiry which was send to Google to analyse aggregated
travel behaviour. As a result, we received aggregated trip
intensities at neighbourhood level for Amsterdam and at
municipality level for the surrounding of Amsterdam, both
are grouped hourly. The data set spans a period of 6 months
that starts 1 April 2016 until 30 September 2016. The
aggregation is based on the division made by Statistics
Netherlands found in [1], who split the area into 512 small
pieces as visualised in Fig. 1a, and in more detail in Fig. 1b.
This division results in more than 300 million data points,
consisting of weights from each origin to each destination
on an hourly basis. Due to privacy issues, the real intensity
has not been disclosed, the intensity is given by a weight
which represents a relative value. More specifically, all
intensities have been divided by the largest hourly intensity
over these 6 months, resulting in weight values between 0
and 1.

In Table 1, a example of the data is given. In the columns,
the origin and destination neighbourhood is indicated by a
number. The time interval is given in seconds from UNIX
time and consist of hourly intervals.

Table 2 Frequency values for each weight in percentage of occurrence
and total density

Weight % Occurrence % Total weight

0 71.62% 0%

0.000365764 17.67% 36.42%

0.000731529 6.66% 27.44%

0.001097293 2.49% 15.38%

0.001463058 0.93% 7.68%

> 0.001463058 0.63% 13.08%

In Table 2, a summary of the weights observed in the
data set is given based on the frequency. We observe that
the total number of hours that contains weights larger than
0 is close to 30%. As the data consists of all destinations
for each origin for every hour, we observe fully connected
graphs during most peak hour periods. A large number of
the weights consist of small values, an overview is presented
in Table 2.

2.2 Filtering and preprocessing

For the clustering procedure, we restrict ourselves to the
travel characteristics within Amsterdam. In this section, we
analyse the behaviour of people travelling within the city,
and the travelling behaviour from and to the city from the
metro region (defined in Fig. 1a), to grasp the main traffic
characteristics and identify deviating patterns.

In Fig. 2, the weekly pattern of trips within Amsterdam
is visualised. As can be seen, the rush hour is not so clearly
present, and the number of trips in the weekend is nearly as
large as during the weekdays. Of course, this data contains
not only car travel movements, but also walking and cycling
which could explain the intensity of trips throughout the
day. The rush hour of trips between Amsterdam and the
metro region area visible in Fig. 3. In the morning, a clear
migration from the greater region of Amsterdam is observed
to the city of Amsterdam, and in the evening vice versa. In
Fig. 4, the spatial spread of these trips is visualised. The
dark red areas in Fig. 4b all contain large business districts,
which could be expected. However, we observe that Figs. 4a
and b do not show a similar pattern. In Fig. 4a trips
are homogeneously spread over Amsterdam, whereas in
Fig. 4b larger variations in weight between neighbourhoods
is observed. A more detailed analysis on this aspect will be
discussed below.

In Fig. 5 of the total trip, weight for each neighbourhood
as an origin and as a destination for trips within Amsterdam
is visualised. We again observe a similar pattern as in
Fig. 3. The destination figure shows a homogeneously
spread pattern, while the origin figure shows more variation
between the areas. This suggests that certain parts of
Amsterdam have more inflow than outflow over a large
period of time, which does not make sense considering that
these trip intensity are the sum of a half year period. In
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Fig. 2 Weekly pattern of weights per hour with a 95% confidence interval

Fig. 5c, the total inflow and outflow per neighbourhood are
visualised. It shows that certain parts of Amsterdam have
larger inflow than outflow, except for the first 30 values

which belong to the metro region areas. These observations
suggests that a transformation has been applied to censor the
data.

(a) Weekly pattern for Amsterdam as a destination

(b) Weekly pattern for Amsterdam as an origin

Fig. 3 Time intensity pattern to and from Amsterdam
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(a) Inflow intensity pattern (b) Outflow intensity pattern

Fig. 4 Spatial intensity pattern of Amsterdam of trips from and to the surrounding metro region of Amsterdam spanning the 6-month period.

In order to restore the disbalance of the in- and outflow,
we rescale the rows of the OD matrix such that the row
and column sums become equal. This is done by solving
a system of equations where the OD weights are used
as Markov chain weights [21]. The resulting stationary
probability vector provides the scaling of rows such that the
OD matrix disbalance is restored. We use the origin weights
as a reference and ‘repair’ the destination weights. In recent

work by Tesselkin [26], this scaling method has been used
to reconstruct the OD matrix from traffic flow observations
on road segments.

In short, the computation consists of the following steps.
We denote the OD matrix by an n by n matrix W , where
n denotes the total number of neighbourhoods, and Wi,j

denotes the intensity of trips from neighbourhood i to
neighbourhood j , for i, j = 1, . . . , n. To restore the

(a) Inflow intensity per neighbourhood (b) Outflow intensity per neighbourhood

(c) Total inflow and outflow intensity per neighbourhood of trips within Amsterdam

Fig. 5 Visualisations of the travel intensities within Amsterdam at each neighbourhood spanning the 6-month period
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(a) Scaling values of numbered neighbourhoods (b) Geographical visualisation of scaling values

Fig. 6 Rescaling values of each neighbourhood, visualising the imbalance of the data between inflow and outflow, where a value of 1 represents
no imbalance

balance, we have to solve the linear set of equations as
follows:

Wx̄ = WT ē, (1)

where x̄ is the scaling vector and ē is a vector of ones.
In a Markov setting, the vector x may be interpreted

as the stationary vector that balances inflow and outflow
for each node in the OD matrix. The left-hand side of
Eq. 1 resembles the total outflow corresponding to vector
x. The right-hand side corresponds to the total inflow for
each node in the OD matrix by taking the sum over all
columns of W. The solution of x̄ is then obtained by
premultiplying (1) with the pseudo-inverse W−1 such that
x̄ = W−1WT ē. The resulting scaling values are visualised
in Fig. 6a. It can be seen that a few areas have a scaling
vector close to zero, which is due to the small total outflow

compared to the inflow of the specific neighbourhoods.
These neighbourhoods are visualised in yellow in Fig. 6b.
We consider these areas as outliers. For analysis purposes,
these can be removed from the data, or the scaling factor
can be used. In this paper, we do not adjust or remove
neighbourhoods to keep the analysis as clean as possible.
Instead, we use the outlier analysis to explain behaviour
caused by these deviations.

To give an indication of the travel characteristics per
neighbourhood, we visualise the inflow intensity of two
neighbourhoods in Fig. 7. We choose the inflow pattern,
as the outflow shows a homogeneous pattern as observed
in Fig. 5a. From both Figs. 7a and b, it is observed that
travel intensities are larger around the area specified. This
suggests that spatially connected communities might arise
when neighbourhoods are clustered based on trip intensities.

(a) Neighbourhood in ‘Zuid’ pinpointed in blue (b) Neighbourhood in ‘Nieuw-West’ pinpointed in blue

Fig. 7 Visualisation of travel flow from a single destination
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In this section, we analysed the travel patterns captured
in the historical OD data from a spatial and temporal
perspective. In general, we can conclude that these patterns
match our expectations of travel intensity behaviour, except
for the observed disbalance between in- and outflow.
We investigated the extensiveness of this disbalance by
equalising the in- and outflow. This led to the conclusion
that, although we suspect an unexplained transformation on
the data, we are confident that this transformation has minor
impact on our results. Therefore, in the remainder of this
paper, we perform our analysis on the original data set.

3Model description

Before we provide all the details of our modelling approach,
we first give a short introduction to network analysis and
why we apply methods from social network analysis.

Network analysis in transportation systems is mainly
concerned with the spatial and temporal nature of move-
ments across the infrastructure and the infrastructural topol-
ogy. Describing the network in terms of nodes and their
linkage to each other, measures such as accessibility and
connectivity can be extracted. Including the flow of move-
ments across the infrastructure can be used to analyse the
network performance. However, this is not an easy task as
such detailed information is often not available.

A major area of research is concerned with the estimation
of path flows, route choice decisions, and mode choice.
A model incorporating the decisions and estimations into
a framework is known as discrete choice modelling [4].
Currently, discrete choice models include an elaborate
specification of dynamics and other elements. However,
social influences are in general not taken into account in
such models, which was first mentioned in [11]. In this case,
models from social network analysis come at hand. In recent
studies, this aspect is considered to be very important [27].
An overview of the current research is given in [19].

In this study, we apply methods from social network
analysis to discover social interactions. Specifically, we use
community detection. The aim of community detection is to
divide the graph into components based on the topological
information of the graph only [12]. These communities
consist of groups of nodes that have a stronger connection
to each other than to members of another community.
Community detection algorithms give insight into the
geographical connection and separation by grouping the
regions into communities.

In the remainder of this section, we explain step by step
the theory and procedure to use community detection in
the OD dataset. First, we explain the transformation of the
OD trip matrix to a connected graph. Then, we introduce
the evaluation metric, denoted as modularity, to determine

the quality of a network partitioned into communities. We
give an explanation of several models that heuristically
optimise this modularity metric. Finally, we show the results
of the heuristic method of our choice in which we obtain
interesting results for various subsets of the data.

3.1 Network description

We represent the OD trip matrix W in terms of a directed
weighted graph G(V, E), where each node i ∈ V =
{1, . . . , n} represents a neighbourhood and each edge
(i, j) ∈ E ⊂ V2 represents an OD pair. Each edge has
a weight that corresponds to the travel intensity across the
respective OD pair, denoted by wi,j ≥ 0, where i, j ∈ V .
We partition the graph into C communities, where, for each
node i mapping index function ci = k, for k = 1, . . . C to
its corresponding community. We define Vk := {i ∈ V :
ci = k} as the set of nodes that belong to community k.
Moreover, we define Ci := {k ∈ V : ci = ck} as the set
of nodes that belong to the same community as node i. The
graph is initialised by either assigning each node to a unique
community (C = n, ci = i), or by assigning all nodes to
one community (C = 1, ci = 1).

3.2 Modularity metric

Modularity is a well-known metric to determine the quality
of a graph partitioned into communities. It is a measure of
strength of the partition of the network into communities
and is defined by a scalar value Q ∈ [−1, 1]. In the
literature, the modularity value is often computed for
undirected graphs. Therefore, we first present the undirected
version before we explain the directed one. The modularity
value Q for an undirected graph is defined by the following:

Q = 1

2m

C∑

k=1

∑

i,j∈Vk

[
wi,j − wiwj

2m

]
, (2)

where m = 1
2

∑
i,j∈V wi,j is the total weight in the graph,

and wi = ∑
j∈V wi,j defines the total edge weight attached

to node i. This formula measures the density of edges inside
communities to edges outside communities, the valuewi,j −
wiwj

2m defines the differences between the actual weight
between nodes i and j and the average node degree weight
of i and j . Maximising the modularity value theoretically,
results in the best possible grouping of nodes of according to
the inter and intra cluster trips for a given network. However,
going through all possible iterations of the nodes into groups
is impractical so heuristic algorithms are used.

The modularity metric of (2) can easily be extended to
include directionality as was shown by Leicht and Newman
[18]. They show that the total weight connected to these
two edges should be split into the total in-degree weight of
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one edge and the total out-degree weight of the other edge.
Moreover, we specify the total weight bymd = ∑

i,j∈V wi,j

instead of 2m as we now count each edge weight only once.
This results in the following equation are as follows:

Qd = 1

md

C∑

k=1

∑

i,j∈Vk

[
wi,j − win

i wout
j

md

]
, (3)

where win
i := ∑

j∈V wj,i , and wout
i := ∑

j∈V wi,j .

3.3 Heuristic clustering technique

Clustering based on optimisation of the modularity value
is a popular approach [12]. Many heuristic techniques exist
for modularity optimisation. A comparative study has been
conducted by in [15]. Most of these heuristics are only
implemented for undirected graphs, while our data consists
of directed OD pairs.

For this research, we will not dive into all the clustering
heuristics and their performances. Instead, we only focus
on a method well-known for its computational efficiency,
developed in [6], throughout referred to as the Louvain
method. This method was first used to detect communities
in geographical regions by means of telephone data. The
result which captures our interest is the spatially connected
clusters that were found, although no spatial characteristics
were included in the algorithm. Moreover, this algorithm
has shown to outperform many other heuristic methods
for benchmark graphs. It has been ranked as second-best
heuristic algorithm [15]. The infomap algorithm by Rosvall
and Bergstrom [24], which is based on compression, has
been ranked as first. Later on, we shortly mention its
performance on our dataset.

We now briefly explain the partitioning procedure of the
Louvain algorithm; a more detailed description is given in
[6]. This algorithm can be classified as a greedy hierarchical
approach for modularity optimisation and is known for
its computational efficiency. The algorithm consists of a
two-step procedure which is iterated until the modularity
value is no longer improved. The first step is the ‘greedy’
assignment of nodes to communities, and the second step
contains the hierarchical component, where the obtained
communities are combined.

Initialisation The graph is initialised by a partition into sin-
gletons, meaning that each node represents a community.

Step 1: A loop initiates that runs through all the nodes
in a random order. For each node i ∈ V , the
neighbouring nodes are identified, i.e., wi,j > 0.
For each neighbouring node j , the modularity gain is
computed when node i is added to the community cj of
neighbouring node j . The node i is then added to the
neighbouring node j ’s community that creates the largest

positive increase in modularity, computed by (5). The
first loop is re-initiated until the modularity gain is no
longer improved.

Step 2: All nodes that belong to the same community are
combined into one node representing the community.
This means that the total weight to an external node
is combined from all the nodes within the community,
and the total weight of nodes within the community is
summed, representing the total weight from the commu-
nity to itself.

Stopping criterium: Repeat steps 1 and 2 until the final
communities between the current and previous iteration
are equal.

To speed up the above computation, we focus on the change
in modularity when node i is moved to the community of
node j , rather than recomputing the modularity by (2). For
given modularity Q, the new modularity becomes Q′ =
Q + �Q(i, j), where �Q(i, j) is defined by the following:

�Q(i, j) = − 1

2m

⎡

⎣
∑

k∈Ci\i

(
wi,k + wk,i − wiwk

m

)
+

(
wi,i − w2

i

2m

)⎤

⎦

+ 1

2m

⎡

⎣
∑

k∈Cj

(
wi,k + wk,i − wiwk

m

)
+

(
wi,i − w2

i

2m

)⎤

⎦

= 1

2m

⎡

⎣
∑

k∈Cj

wi,k + wk,i − wiwk

m

⎤

⎦

− 1

2m

⎡

⎣
∑

k∈Ci\i
wi,k + wk,i − wiwk

m

⎤

⎦ . (4)

Similarly, we can compute the change in modularity of
(3) for the directed case by the following:

�Qd
(i, j) = 1

md

⎡

⎣
∑

k∈Cj

wi,k + wk,i − win
i wout

k + win
k wout

i

md

⎤

⎦

− 1

md

⎡

⎣
∑

k∈Ci\i
wi,k + wk,i − win

i wout
k + win

k wout
i

md

⎤

⎦ . (5)

3.4 Evaluation technique

In this section, we explain the evaluation metric that we
use to give an indication of the partition quality of the
OD network, and to make a comparison of the obtained
communities between various time slices. We explain how
we can use the evaluation metric, as the ‘true’ partition of
the network is not known.

In the literature, many evaluation techniques are pro-
posed to determine the quality of the obtained network
partitions. Almeida et al. [2] describe various metrics that
exist to determine the quality. However, no straightforward
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method exists to evaluate the quality of a partition when the
‘true’ partition is unknown. Some of the evaluation tech-
niques can however be used to compare results and give an
indication of their quality.

Themost common quality metric is the normalised mutual
information (NMI) [8]. We use this metric to compare
our partition realisations based on their similarity. This
metric is in the range of [0,1] and equals 1 if two partition
realisations are identical. This value computes the mutual
information between the two partitions and normalises it
based on the entropy value of each realisation. The entropy
is a value of the uncertainty present in a realisation. The
mutual information gives the reduction in uncertainty by
using the information of the first partition to estimate the
second partition. In other words, it computes to what extent
the realisations overlap. The NMI is defined as follows:

NMI(Pi, Pj ) = 2I (Pi, Pj )√
H(Pi) · H(Pj )

, (6)

where Pi and Pj denote the clustering labels, I (·, ·) the
mutual information and H(·) the entropy value. The value
is normalised such that it corrects for differences in the
total number of clusters obtained between realisations. This
metric has been used to compute the quality of various
clustering algorithms [16, 17].

The NMI compares two realisations, whereas we have
a group of realisations and want to determine the overall
similarity between these partitions. To obtain the mutual
information over a group of partitions, we can compute the
so-called average-NMI, as defined by Ana and Jain [3]

average-NMI(P) =
∑

i �=j

NMI(Pi, Pj )/

(
r

2

)
, (7)

where r denotes the number of cluster realisations, P =
{P1, . . . , Pr } the group of partitions, and Pi, Pj the
individual cluster realisations.

4 Preliminary cluster results

In this section, we show the resulting communities of the
OD data in Amsterdam by using the Louvain algorithm.
We partition the dataset based on time slices and discuss
the observed differences in communities by using the
evaluation metrics described in Section 3.4.

Various clustering heuristics are compared in [15] such
as Fast Greedy, Walktrap, infomap and OSLOM. In contrast
to the positive results on the benchmark sets used in [15],
these methods proved to be unsuccessful when applied to
the OD data of Amsterdam. These methods either failed to
converge or returned near to zero modularity values. Near
to zero modularity is an indication that the corresponding
clusters do not represent any cohesion. In Fig. 8b, the
clusters resulting from the undirected implementation of the
Louvain algorithm are visualised, a close to zero modularity
value is obtained. Visually, we observe that these clusters
show a certain degree of spatial connectedness, although the
lowmodularity value indicates that a high spatial connected-
ness in the network exists.

Although our data set does not consist of millions of
nodes and edges, we do have a large number of edges
to nodes ratio. The dataset consists of a fully connected
graph, which is probably the reason that most clustering
methods do not find good communities. Moreover, the
directionality of the connections in the data was not included
in most of these heuristics. Therefore, we continued the
analysis by using an implementation of the directed Louvain
method developed in [25]. An output of this method is
visualised in Fig. 8a. As can be seen, the clusters that result
from the Louvain method including directionality appear
spatially close, although no spatial aspects are taken into
account. Moreover, some of the communities have a close
resemblance with the districts of Amsterdam. For example,
the ‘Zuid-Oost’ district, which is more isolated from the rest
of Amsterdam, is nearly covered by a single community.

(a) Louvain directed (b) Louvain undirected

Fig. 8 Clustering with respect to destination for each district
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(a) Week (b) Weekend

Fig. 9 Clustering with respect to destination for each district using the Louvain method

Nevertheless, the modularity value of the resulting clusters
is 0.01, although larger than the undirected output, it is still
rather small.

The geographical visualisation of the directed Louvain
method show connected clusters and are grouped at
locations that we would expect. Therefore, we explore
continue to explore the results for this methods for subsets
of the data. We divided the data based on the trips during the
week and the weekend and applied the Louvain clustering
algorithm. The results are shown in Fig. 9. In both figures,
similar clusters appear. However, there are some clear
differences. The main differences are the clusters in district
‘Oost’ and ‘Westpoort’ that appear only for the week data,
and the cluster in the ‘Amsterdam West’ district that pops
up in the weekend data. The clusters at the outskirts of
Amsterdam appear to be the most prominent.

Table 3 shows the average similarities between the
clustering realisations over the same dataset by using the
average-NMI value of (7). We divided the data based on the
‘Total’ trips, trips during the ‘Week’ and ‘Weekend’ and the
similarity results over the ‘Total period’ and on a monthly
basis. The average-NMI values show that most subsets show
consistent results between runs. However, the weekend data
shows an overall smaller average-NMI value, especially
when the monthly division is used. The consistency of the
weekend data for each run is smaller compared to the week
and total data sets. These variations can be caused by the
smaller number of days covered, as well as less regular
travel patterns in the weekend.

To analyse whether large differences and similarities
between months are present, we again use the average-NMI
value of (7) to compare the resulting partitions. The results
are shown in Table 4. The average-NMI value of each month
with itself is shown as well. The largest NMI value for each
subset is with itself, denoted by the values on the diagonal.
The last row compares the total data set with each month.
We do not observe extreme differences between the months
in this comparison.

The small modularity value appears for each of the
subsets of the data. The small modularity combined with a
fully connected network is not a surprising result. The fully
connected graph indicates a well-connected network with a
lot of interaction throughout the whole area of Amsterdam.

The results of the partitions in each of the have an overlap
with the districts in Amsterdam. Although there are some
differences between the municipalities and the clustering
results, most of these differences can be explained with
common sense and they provide insight in the structure
of movements in Amsterdam. For example, the cluster
IJburg which is a small neighbourhood is standing out, there
are not a lot of exits causing people to stay within their
neighbourhood more often. While on the other hand in the
‘Jordaan‘ no clear cluster is present. This neighbourhood
is very easy to reach from other parts of Amsterdam, as a
results there is no separate cluster that appears.

Although we can explain the spatial appearance or
abundance of certain cluster, we cannot determine whether
there are clear variations between months. We therefore

Table 3 Comparison of the
similarity between cluster
realisations for different
subsets of the data by using the
similarity metric NMI

Period Total period April May June July August September

Total 0.94 0.82 0.83 0.82 0.85 0.79 0.78

Week 0.94 0.84 0.88 0.91 0.83 0.85 0.87

Weekend 0.85 0.43 0.44 0.48 0.48 0.49 0.46
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Table 4 Comparison of the
similarity between cluster
realisations for monthly subsets
of the data by using the
similarity metric NMI

Period April May June July August September Total period

April 0.85 − − − − − −
May 0.75 0.86 − − − − −
June 0.74 0.76 0.91 − − − −
July 0.77 0.76 0.75 0.87 − − −
August 0.73 0.73 0.72 0.77 0.86 − −
September 0.73 0.73 0.72 0.75 0.72 0.87 −
Total period 0.82 0.83 0.82 0.84 0.79 0.78 0.93

continue our analysis to determine the strength of the
communities.

5 Robustness of communities

In the previous sections, we observed the spatially
connected partitions of OD data in Amsterdam. To gain
more insight in the generated communities, we analyse the
strength of the communities relative to each other in terms
of connectivity.

To analyse what fraction of all edges contributes to
the detection of these district boundary clusters, we
propose a simple method for analysis. We remove the
smallest x weights edges from each neighbourhood, where
x ∈ {1, . . . , n} and n denotes the number of nodes
of the network. In Fig. 10a the results show that the
modularity value increases when the number of smallest
weights x removed increases, as would be expected.
More interestingly, the number of clusters found remains
relatively constant until almost all values are removed. In
Fig. 10b the clusters found when 10% of the smallest
weights were removed are visualised. It can be seen that

this partition represents the regional boundaries even more
closely than the clusters of the complete set. This suggests
that although the trips within Amsterdam are well spread,
trips within regional boundaries have higher weights in
almost every district. Only part of the ‘Centrum’, ‘West’ and
‘Zuid’ region remain connected as one cluster.

In addition to the question which edges contribute
to the spatially connected clusters, another question that
arises is the connectedness of the communities with
respect to each other. Which are the most prominent
communities in the dataset, and which communities are less
prominent. Although there is no specific metric available
in the literature to evaluate such property of connectedness
[12, Chapter XIV], in [14], the authors evaluate the
connectedness by adding random noise to the edge weights.

We applied the same methodology as in [14]. We add
random weights to the edges with a predefined variance.
Thus, for each edge in the network, we draw a random
variable X, where X ∼ N(0, σ 2), add these values to the
OD matrix, run the Louvain algorithm and visualise the
obtained clusters. We gradually increase the value of σ and
evaluate the resulting clusters between each increment until
no coherent structure can be found. This gives an indication

(a) Modularity and cluster results (b) Results based on removal of 10%

Fig. 10 Cluster analysis for increasing number of removed edges per neighbourhood
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Fig. 11 Clustering results under
random noise addition

(a) Random noise with σ = 0 .5

(b) Random noise with σ = 1

(c) Random noise with σ = 2
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of the connectedness of each community relative to the other
communities in a visual manner.

In Fig. 11, a realisation for an increasing variability in
random noise is shown. It should be kept in mind that
these graphs only show the result of a single realisation
and are only indicative of the impact of noise. We observe
that the cluster ‘Zuidoost’ and ‘Noord’ remain visible
although a large noise value is added to the edges. The
cluster ‘Centrum‘ is the first to disappear, and dissolves
in the ‘Oost’ cluster. This is a first step towards analysis
of connectedness of clusters with respect to each other.
In [14], a more thorough analysis of the consistency of
the individual nodes is applied. For the current analysis,
we have so far only used visually indicative results. In
Section 6.2, we continue introduce a method that reduces
the variations between each realisation of the same subset
to obtain more consistent results at each run, allowing for
comparison between subsets.

6 Consistency of communities

So far, we analysed the community structure of the
communities resulting from the Louvain clustering heuristic
method applied on the OD data set. We observed variations
between realisations of the same dataset and between
subsets of the data. To compare the communities of the
subsets relative to each other, we need a procedure that
gives more or less consistent communities when applied
on the same subset. We use a procedure called consensus
clustering to obtain this consistency. Consensus clustering
is an ensemble learning method that combines multiple
realisations to create a more consistent final result. An
example applied to graph clustering is explained in [22].

6.1 Consensus clustering procedure

To determine the consistency of each community, we
analyse which neighbourhoods characterise the community.
In this section, we explain the procedure to obtain such a
characterisation for the current data set.

The Louvain method aims to maximise the modularity
value in a greedy manner. The greedy approach makes
it computationally efficient, and makes it applicable
for clustering on large datasets. However, due to a
randomisation in the approach, each realisation can deviate
from a previously obtained realisation. The algorithm
evaluates nodes based on their modularity gain when
clustered. Due to randomisation in the order of which these
nodes are evaluated, deviations in initial clusters occur. As
the algorithm progresses, these initial clusters can result in
a node ending up in another cluster than for other initial
clusters. Moreover, some communities might not appear due

to initial clusterings of nodes which in other realisations
belong to different communities. We want to exploit these
variations to find the neighbourhoods that can be defined as
the ‘core’ of the community, as well as the neighbourhoods
that are on the boundary between communities.

A method known as cluster ensemble learning can be
used to obtain the core cluster result, ensemble-based
learning is a procedure that combines the results of a certain
number of weak learners to obtain a final more robust
result. In [13], an ensemble learning procedure is explained
which they call evidence accumulation clustering. We use
this procedure to obtain our final partition. The evidence
accumulation method is composed of three steps. We will
explain each step and specify the implementation that we
choose to generate our results.

Step 1 (Generating an ensemble): A cluster ensemble is
generated consisting of m clustering partitions, denoted
by

P = (P1, . . . , Pm)

P1 =
(
c
(1)
1 , c

(1)
2 , . . . , c(1)

n

)

...

Pm =
(
c
(m)
1 , c

(m)
2 , . . . , c(m)

n

)
,

where c
(j)
i ∈ {1, . . . , C(j)} gives the cluster k ∈

{1, . . . , C(j)} that node i of partition j is assigned to.
These partitions can be obtained by either using different
representations of the data, the choice of algorithms,
or the algorithmic parameters. The randomised order of
the node evaluations in the Louvain algorithm causes
variations between each realisation in our dataset, which
make it an appropriate method to apply the algorithmic
parameter approach. The randomisation of the nodes is
then the parameter adjustment.

Step 2 (Determine the similarity): The second step is to
combine the cluster realisations by combining ‘evidence’
in the so-called co-association matrix A, with entries
A = (ai,j ), with the following:

ai,j = ni,j

m
, (8)

where ni,j =
m∑

k=1
1{

c
(k)
i =c

(k)
j

} represents the number of

times that nodes i and j belong to the same cluster among
the m partitions.

Step 3 (Obtain the final partition): The final step in the
evidence-based clustering method is to obtain the final
cluster partition from the generated similarity matrix A.
Any clustering can be applied over this matrix to generate
this partition. A hierarchical clustering algorithm is
used to combine the nodes and generate the resulting
dendrogram [9]. This last step can become complicated
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when the number of nodes is large. However, in [13],
Fred and Jain propose to group similar nodes together
before generating the dendrogram. We use this approach
to group the nodes that belong to the same partition
in all iterations before generating the final dendrogram.
We obtain our matrix A by applying the following three
steps:

(a) We combine the nodes which are in the co-association
matrix A with the value 1, meaning that they are
grouped in the same cluster for all realisations. This
gives a reduced form matrix A′ ⊂ A.

(b) The subset A′ is then used to obtain the dendrogram
using the complete-link method [9]. The complete-
link method computes the dendrogram based on the
furthest neighbour method. This method is known to
generate clusters that are well separated and compact
and is one of the most commonly used methods for
hierarchical clustering. As it computes the furthest
neighbour, we have to determine the dissimilarity
between nodes. This means that we use A′′ = 1 − A′.

(c) Having obtained the dendrogram, we then need
to determine the cutoff value to disentangle the
dendrogram into separate clusters. We determine the

(a) Core cluster

(b) Core cluster dendrogram

Fig. 12 Core clusters for the complete data set
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cutoff value that leads to the identification of k

clusters, where we set k equal to the closest integer
value of the mean number of clusters from the cluster
ensemble input P .

In the next section, we show the results obtained from the
above procedure.

6.2 Experimental results

We apply the evidence-based learning algorithm to show
the consistency and variation between communities and
neighbourhoods. We use this approach to compare the
monthly subsets in a more robust manner as well.

We applied the ensemble learning method initially over the
whole data set. We computed the results based on N =
1000 realisations of the Louvain algorithm and computed
the co-association matrix. We grouped the nodes of the co-
association matrix of (8) when they belong to the same
community over all realisations. This results in a subset of
the co-association matrix of size 6, of which 34 values are
due to individual nodes. For the current analysis, the size
of the dendrogram is still manageable. However, when many
individual nodes occur, the reduction of the co-association
matrix can also be performed based on a high similarity value.

The resulting core clusters of the total OD data are
visualised in Fig. 12. Figure 12a of the final core cluster

(a) Core cluster business days

(b) Core cluster dendrogram business days

Fig. 13 Core clusters for the week data set
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assignments by individual colours. The value in each
neighbourhood represents the initial partition of 61 values
in the co-association matrix. The dendrogram of Fig. 12b
shows the dissimilarity between the node groups that are
grouped together. For example, the pink group with node
groups 21 and 57 have a dissimilarity value near to zero.
This means that in only a few realisations of the algorithm
they were not assigned to the same cluster. On the opposite
side, we can observe that node group 47, denoted by red,
does not have a large similarity value compared to the other

node groups in this cluster. It is interesting to observe that
we have two core clusters consisting of only a single group
of nodes. These two node groups were identified in all
N realisations, meaning that the neighbourhoods in these
groups were consistently grouped together.

We applied the same analysis for the weekdays and
weekend subsets of the OD dataset. The resulting parti-
tions and dendrograms are visualised in Figs. 13 and 14.
Especially for the weekend subset, we observe more diver-
sity between the clustering result. The dendrogram of Fig. 14

(a) Core cluster weekend

(b) Core cluster dendrogram weekend

Fig. 14 Core clusters for the weekend data set
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Table 5 Average NMI values
of the consensus clustering
result based on monthly data

Period April May June July August September Total period

April 0.97 − − − − − −
May 0.79 0.98 − − − − −
June 0.76 0.79 0.96 − − − −
July 0.81 0.83 0.76 1.00 − − −
August 0.76 0.78 0.72 0.81 0.95 − −
September 0.74 0.74 0.70 0.74 0.71 0.90 −
Total period 0.85 0.88 0.82 0.90 0.81 0.77 0.98

Table 6 Average NMI values
of the consensus clustering
result based on monthly data
during business days

Period April May June July August September Total period

April 0.97 − − − − − −
May 0.76 0.97 − − − − −
June 0.77 0.79 0.99 − − − −
July 0.75 0.75 0.71 0.93 − − −
August 0.74 0.77 0.72 0.76 0.95 − −
September 0.75 0.74 0.72 0.71 0.72 0.95 −
Total period 0.70 0.73 0.70 0.72 0.73 0.64 0.98

Table 7 Average NMI values
of the consensus clustering
result based on monthly data
during the weekend

Period April May June July August September Total period

April 0.64 − − − − − −
May 0.38 0.66 − − − − −
June 0.38 0.40 0.66 − − − −
July 0.40 0.45 0.44 0.69 − − −
August 0.38 0.40 0.41 0.42 0.69 − −
September 0.38 0.39 0.39 0.42 0.39 0.65 −
Total period 0.49 0.54 0.55 0.57 0.52 0.53 0.99

Table 8 Number of clusters in the final core cluster result

Period All Week Weekend

April 8 9 8

May 9 9 9

June 9 10 8

July 9 9 8

August 10 10 9

September 7 8 7

Total 9 9 9

Table 9 Cutoff values, representing the highest dissimilarity between
cluster branches that were combined to obtain the core cluster results

Period All Week Weekend

Total 0.51 0.70 0.51
April 0.63 0.67 0.95
May 0.69 0.57 0.96
June 0.62 0.57 0.92
July 0.48 0.69 0.93
August 0.66 0.67 0.94

September 0.57 0.61 0.92
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b shows that in particular the centre cluster shows large
fluctuations over the partitions. No major differences are
observed between the week and weekend partitions, suggest-
ing that travel behaviour shows similar groups for the week
and weekend days.

We continue to use the cluster ensemble technique to
obtain more robust results for the monthly subsets. In
Tables 3 and 4, the NMI values of the cluster partitions
of the same data set were relatively low. Making it hard
to draw conclusions when compared to each other. We use
the cluster ensemble method and run this method several
times to compute the average-NMI values over the subsets.
The results are shown in Tables 5, 6 and 7. It shows that
the self-similarity is increased for the total and weekly data
set, obtaining values close to 1. This allows for a better
comparison between the several months as the monthly
subset gives more self-consistent results.

The average-NMI values in Tables 5 to 7 show that in
particular September gives a lower NMI value compared to
other months. To determine whether specific results deviate,
visual representations of the maps should be compared.
However, we first analysed the number of clusters that
were formed for each month. The average number of
clusters for each monthly subset are shown in Table 8
for the weekdays, weekend and total set. Interestingly,
the September month shows fewer clusters compared to
the other months, possibly explaining the lower similarity
value. June and August result in slightly more clusters
compared to the other months. We expect that the main
differences between the resulting core clusters are caused
by the number of partitions.

An easy analysis of the partition differences observed
in Table 9 of August and September is a geographical
visualisation of the core result obtained from the ensemble
method. In Fig. 15, both months are shown. We observe

that in Fig. 15b, representing September, the centre cluster
disappeared. A possible explanation for the absence of this
cluster is the end of the tourist season, generating fewer
trips in the city centre. As for August, we observe a very
prominent cluster at the border of district ‘West’ and ‘Zuid’,
consisting of only one neighbourhood. This neighbourhood
consists of the largest city park in Amsterdam, which is a
famous hotspot during warm weather.

Finally, we can interpret the cutoff values that are used to
determine the cluster results. The cutoff value is determined
by the dissimilarity value for which we obtain a specific
number of clusters, which is equal to the average number
of clusters in the ensemble of partitions P . The higher the
cutoff value, the higher dissimilarity value to combine the
correct number of partitions. As expected, the cutoff value
is larger for the monthly weekend data, again confirming
our observations that the weekend trip data shows less
consistent clusters.

7 Conclusion

In this paper, we analysed travel behaviour in Amsterdam
based on origin-destination travel intensity data. We
analysed both the spatial variation as well as the time-
dependent variation of trips. We proceeded our analysis
by using clustering techniques based on modularity
optimisation to separate regions based on internal travel
behaviour. We used a heuristic technique to separate these
regions and exploit this to analyse the consistency of the
obtained results. Finally, we discovered deviations in the
patterns in time.

The weekly pattern and spatial plots confirm expected
behaviour, such as the morning and evening commute.
We observe that the trips taken from the metro region of

(a) Core cluster of August (b) Core cluster of September

Fig. 15 Core clusters for the complete data set
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Amsterdam are largely commuting trips. There are three
areas that show a high density of trips coming from the
metro region, each of them contains large business districts.
However, from this analysis, we also discovered a gap
between the total inflow and outflow. As there is no logical
explanation for this behaviour, we assume that this occurs
due to some transformation to censor the data. In order
to properly analyse the data, we restored this imbalance
and obtained scaling values for each neighbourhood. This
revealed a couple of outliers in the data. Especially, in the
east of Amsterdam, a few neighbourhoods which mostly
consist of water showed a large difference between the total
inflow and outflow value. With these outliers in mind we
continued our analysis.

We were able to identify clusters when the directionality
is taken into account. These clusters happen to be very
similar to the regional districts defined in Amsterdam.
Especially, at the outskirts of Amsterdam, we can clearly
identify clusters. The city centre is represented by one large
cluster, together with parts of the east of Amsterdam. When
the method is separated into monthly periods, and a division
between the weekend and weekday trips is introduced, the
result suggest that we observe slightly different clusters in
the weekend compared to the week data. Although this is
hard to conclude, given to the inconsistency between results
of the same data partition.

We analysed the results when part of the data is removed.
This revealed that a lot of small weight edges can be
removed without losing the spatially obtained clusters.
We can conclude from the above analysis that trips in
Amsterdam are quite homogeneously spread over the
city. However, we do observe clustering, although not so
prominently. This analysis should be extended by including
dynamic time-window clustering. Moreover, filtering the
commuting trips from the regular trips can give additional
insights into the travel behaviour at each area for leisure.

Finally, we used a cluster-ensemble technique to obtain
more consistent results, allowing for a better comparison.
The results from the cluster ensemble method showminimal
deviations between the obtained clusters over the time-
dependent subsets, regarding week and weekend. The
monthly subsets revealed some differences in the number
of partitions obtained in each month. Nevertheless, no big
differences in clusters were found between these subsets,
suggesting that the partitioning is quite robust over the entire
period.

The partitioning results give an indication of the
connectedness through the city. It provides high-level
partitions that can be used to analyse major flows through
the city. This can help policy-makers deciding where the
road network of public transport network is insufficient.
Moreover, major changes in city planning can be analysed
in this aggregated manner. A main limitation of the current

work is that the trip information involves all modalities
together. It would be interesting to analyse each modality
separately to be able to determine the clustering aspect for
specific modalities.

For the long run, city planners could use this type of
analysis to see the city structure and plan accordingly. They
can compare the results to the structure in other cities to see
similarities. A time-dependent analysis for a group of cities
would allow them to predict the changes in the future for
cities with similar characteristics in different points in time.

Further research could involve the quantification of the
strength of each cluster. In this paper, we focussed on
the overall strength, an extension would be to quantify
this strength per cluster. Another approach would be to
determine the variety of each cluster by means of an NMI
value per cluster. This would give a representation of the
strength of a cluster in terms of consistency.
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10. Dugué N, Perez A (2015) Directed Louvain: maximizing
modularity in directed networks. PhD thesis, Université d’Orléans
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