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ABSTRACT
Congestion in road traffic has received substantial attention in the
research literature. One popular approach to modelling congesting
and user response is the seminal bottleneck model introduced by
Vickrey [25]. Here traffic is modelled as a fluid, and all travellers are
subject to cost for waiting, early departure, and late departure. The
travellers’ response to the congestion is captured by assuming that
they arrive at the bottleneck according to a Wardrop equilibrium,
meaning that no traveller can decrease its costs by shifting its arrival
time. This model and its extensions have been extensively studied in
the research literature, but ignore the fact that road traffic consists
of individual travellers with uncertain arrival time and speed. While
the fluid approach used in the Vickrey model may be correct when
the number of travellers is large, it fails to yield accurate predictions
for a small number of travellers.

In the present paper we propose a stochastic version of the
bottleneck model, that can also handle smaller number of travellers.
We discuss the error made by the fluid approximation, and show
that the Wardrop equilibrium results in highly varying costs when
applied in the more realistic setting with stochasticity. We then
discuss an algorithm for numerically computing the equilibrium
arrival rate for the stochastic bottleneck model, and propose a
closed-form estimation for this equilibrium. This can be used for
future studies into the effect of stochasticity in these bottleneck
models.
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1 INTRODUCTION
Bottlenecks are a common phenomenon in road traffic, and arise
when the rate of traffic arriving into a stretch of road temporarily
exceeds its capacity. The resulting congestion causes economic
damages and discomfort to the travellers.

Bottlenecks have been extensively studied in the research litera-
ture, starting with the seminal work of Vickrey [25], inspired by
a morning commute. Traffic is modelled as a fluid, and travellers
experience a penalty for waiting at the bottleneck, as well as for
arriving at their office earlier or later than intended. Because the
morning commute is a recurring and predictable phenomenon, trav-
ellers can learn the behavior of others, and eventually adjust their
departure time from home to minimize costs. This strategic behav-
ior is modelled in [2, 25] by assuming that traffic arrives according
to a Wardrop equilibrium, meaning that no traveller can shift its
arrival into the bottleneck without increasing its costs.

This bottleneck model and its variants have been studied exten-
sively in econometrics and transportation literature, and it remains
a popular starting point for many recent studies, see, e.g., [2, 21] for
an overview. Extensions include demand elasticity [3], which stud-
ies the impact of capacity expansion at the bottleneck. The impacts
of heterogeneity among travellers is studied by [1] for which they
consider multiple classes of travellers with different cost parameters
and target times for departing the bottleneck. In [17] the authors
study under which heterogeneity assumptions a bottleneck period
still exists. More recent studies consider spatial effects [16], endoge-
nous trip timing effects with respect to group arrival times [10],
and the relation between parking facilities and congestion [23]. The
Wardrop equilibrium can be computed in closed form for a range
of these model variants.

In practice road traffic is not a fluid, but instead consists of
individual travellers, each of which may have some uncertainty
surrounding its arrival time at the bottleneck and its driving speed.
The fluid assumption used in the bottleneck literature is accurate
when both the number of travellers at the bottleneck and the bot-
tleneck capacity are large, but is inadequate for smaller bottlenecks.
To study the effects of variability and the fact that a bottleneck
consists of discrete travellers, we modify the traditional determin-
istic bottleneck model [2] by considering the traffic waiting at the
bottleneck as a stochastic process.

While the resulting stochastic model is less tractable than the
deterministic bottleneck model, it allows for more detail and accu-
racy. We first show that the Wardrop equilibrium computed for the
deterministic model does not provide equal costs in the stochastic
setting, unless the number of travellers is large. We then compute
a similar equilibrium concept for the stochastic model, and discuss
how it differs from the Wardrop equilibrium. Using these results we
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propose a closed-form approximation for the stochastic equilibrium,
and show that it performs well.

This work fits in a larger trend towards modelling uncertainty in
the bottleneck literature. Most variants of the bottleneck model that
include stochasticity do so exogenously, for instance by including
some random additional travel time due to an incident [6, 18]. In
our study we investigate the impact of endogenous effects, where
the uncertainty of the arrival behaviour is included in the model.

The impact of uncertainty over time due to endogeneity is stud-
ied in [7–9]. In particular, in [8] the daily demand and capacity
are assumed to be random variables from a known distribution.
The authors show that under very general assumptions the vari-
ance of the delay is increasing in its expectation. This phenomenon
has been observed empirically as well in [5], where the authors
demonstrate that travel time variance is strongly correlated with
the queue length. A paper by [26] adds these effects by increas-
ing the variance of the error term depending on the queue length.
However in our model these effects are implicitly included, which
confirms the accuracy of our modelling approach.

Beyond the transportation science literature, this paper is closely
related to those on the boundary between queueing and game the-
ory. In [11] the authors consider a queueing system with a finite
number of customers that must arrive before some time T . Where
each customer tries to minimise its waiting time by strategically
determining its arrival time. This model has been extended in [13],
where the arrival rate is modelled as a non-homogeneous Poisson
process and early arrivals are served at random when the facil-
ity opens. This is also related to the so-called concert queueing
model [15], where customers aim to arrive at some time T , but
incur costs for waiting and for tardiness. Various extensions and
generalisations have been studied in [14, 15]. Other related mod-
els from game theory are the airport boarding game [24] and the
meeting game [12]. Our paper is most closely related to [20], where
the authors study a similar model to ours, but consider a different
equilibrium concept.

The remainder of this paper is structured as follows. First we dis-
cuss the traditional deterministic bottleneckmodel and theWardrop
equilibrium in Section 2. In Section 3 we introduce the stochastic
bottleneck model, and show how to numerically compute the equi-
librium arrival rate. In Section 4 we use this to propose a closed-
form approximation of the stochastic equilibrium. We conclude in
Section 5, and outline future research directions.

2 DETERMINISTIC BOTTLENECK MODEL
In this section we provide some background on the determinis-
tic bottleneck model introduced in [2], and describe the Wardrop
equilibrium that ensures that all traffic experiences the same costs.

2.1 Model outline
We consider a single bottleneck, with fluid arriving at time t with
rate λ(t ). The fluid represents identical travellers, and the bottleneck
can serve a fixed capacity s of traffic per time unit. Each traveller
wants to exit the bottleneck at time t∗, and incurs a penalty for
waiting time in the queue and departing from the queue earlier or
later then the desired time t∗. This penalty is captured by a linear

cost function, with cost coefficients α (waiting), β (early arrival),
and γ (late arrival).

Let tq denote the time of the first arrival, then the cumulative
inflow of traffic at the bottleneck up to time t can be written as
a(t ) =

∫ t
tq
λ(u)du, and the cumulative outflow asd (t ) = s max{0, t−

tq } (assuming that the bottleneck only empties once). The sojourn
time of a traveller arriving at time t can be computed as w (t ) =
a(t ) − d (t ). The cost incurred by an arrival at time t can then be
written as (with (a)+ = max{a, 0}):

c (t , λ) = αw (t ) + β (t∗ − t −w (t ))+ + γ (t +w (t ) − t∗)+. (1)

Here the t +w (t ) − t∗ denotes the difference between the departure
time of a traveler t +w (t ) and its desired departure time t∗. Observe
that c depends on λ through the sojourn timew .

2.2 Wardrop equilibrium
Given a total amount of fluid N , we want to find an inflow curve
λf (t ) such that no traveller can decrease its costs by altering its
arrival time at the bottleneck. It has been shown (see, e.g., [22])
that such aWardrop equilibrium exists, is unique for α > β , and is
given by

λf (t ) =



r1 (t − tq ) t ∈ [tq , tn ),
r1 (tn − tq ) + r2 (t − tn ) t ∈ [tn , tq′],

(2)

where
r1 = s +

βs

α − β
, r2 = s −

γs

α + γ
, (3)

tq = t∗ −
ηN /s

1 + η
, tq′ = t∗ +

N /s

1 + η
, tn = t∗ −

δN /s

α
, (4)

with η =
γ
β and δ =

βγ
β+γ . This arrival curve gives all travellers

equal costs

cf = δ
N

s
, (5)

For α > β the inflow rate presented in (2) generates a single busy
period, i.e., w (t ) > 0 for all t ∈ (tq , tq′ ) [22]. In this equilibrium,
the first and last fluid will only incur costs for early/late arrival,
and experience no delay. The fluid leaving exactly at the preferred
time t∗ encounters costs consisting only of delay.

An example of the Wardrop equilibrium is illustrated in Fig-
ure 1. This shows the cumulative inflow a(t ) (blue), the cumulative
outflow d (t ) (black), and the waiting timew (t ) (red).

3 STOCHASTIC BOTTLENECK MODEL
In practice road traffic is not a perfect fluid, but consists of individual
travellers, which each have some uncertainty surrounding their
arrival time at the bottleneck and their speed. We capture this
uncertainty by assuming discrete travellers that arrive at the queue
according to a time-dependent Poisson process with rate λ(t ). The
arrival rate function is such that the expected total number of
travellers in N , i.e.,

∫
λ(t )dt = N . The bottleneck can serve only a

single traveller at a time, which takes an independent and identically
distributed exponential time with rate µ = s . Such assumptions are
not uncommon in this setting, see [4, 14]. Note that our model is
equivalent to anMt /M/1 queue.

Similar to the deterministic model, each traveler prefers to exit
the bottleneck at time t∗, and incurs a linear penalty α for waiting,
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Figure 1: Equilibrium inflow, outflow and waiting time for
the deterministic bottleneck model withT = N /s = 60, α = 1,
β = 0.5, γ = 2 and t∗ = 0.

β for arriving early, and γ for tardiness. Let us denote byW (t )
the random variable that represents the sojourn time of a traveler
arriving at time t , which depends on the past arrival rate through
the travellers in the queue upon arrival. The cost function for the
stochastic model is identical to that of the deterministic model (1),
with the sojourn time replaced by its stochastic counterpart:

C (t , λ) = αW (t ) + β (t∗ − t −W (t ))+ + γ (t +W (t ) − t∗)+. (6)

Note that C (t , λ) is also a random variable, since it depends on
W (t ).

A possible equilibrium concept in this situation is the symmetric
Nash equilibrium, where we choose the arrival time distribution
of each traveller in such a way that none can improve its costs
unilaterally, see [20]. Since we are more interested in comparison
to the Wardrop equilibrium, we consider the problem of finding an
arrival rate such that expected costs EC (t , λ) are the same across
the time interval during which arrivals take place:

EC (t , λ) = αEW (t ) + βE[(t∗ − t −W (t ))+]

+ γE[(t +W (t ) − t∗)+]. (7)

In contrast to the deterministic model we cannot obtain this equi-
librium in closed form, and instead we describe how to compute it
numerically in the next sections.

3.1 Computing the expected costs
In order to compute the equilibrium we first compute the expected
costs over time for a given arrival rate function λ(t ). The expected
cost of a traveler depends on its sojourn time, which is determined
by the queue length upon arrival. Below we describe how to com-
pute the transient queue-length distribution for a given arrival rate
λ(t ), and use this to compute the sojourn time distribution and the
expected costs. We assume that there exist some t0 < t1 such that
λ(t ) = 0 outside of [t0, t1].

We consider a continuous-time Markov chain representing the
number of travellers waiting at the bottleneck. At each state an
arrival or departure can take place, except for state 0 in which there
is no one waiting. The time-dependent transition matrix Q (t ) is

given by

Q (t ) =



−λ(t ) λ(t ) 0 · · ·

µ −(λ(t ) + µ ) λ(t ) · · ·

0 µ −(λ(t ) + µ ) λ(t )
...

. . .
. . .

. . .



We denote π̄ (t ) =
(
π0 (t ),π1 (t ), . . .

)
the distribution of the num-

ber of travellers waiting at time t . In order to compute this we use
uniformisation, where we embed on time instances according to a
Poisson process with rate equal to

ν = sup
t

λ(t ) + µ, (8)

assuming that this supremum exists. Let ∆ > 0 and observe that
(ν∆)n
n! e−ν∆ denotes the probability that n transitions occur in an

interval of length ∆. By conditioning on this we may write

π̄ (t + ∆) = π̄ (t )
∞∑
n=0

(ν∆)n

n!
e−ν∆P (t )n , (9)

where P (t ) denotes the transition probability matrix of the embed-
ded Markov chain given by

P (t ) = I +
1
ν
Q (t ). (10)

We can then approximate π̄ (t ) by discretizing time into small in-
tervals of length ∆ and iterating according to (9), starting from
π̄ (t0) = (1, 0, . . . ).

Having outlined a numerical procedure to obtain the queue-
length distribution, we can use this to determine the expected costs
over time, by first computing the sojourn time distribution at each
time instant t for an arriving traveller.

Let f (τ , t ) denote the density function of sojourn time of a trav-
eller arriving at time t . By conditioning on the number of travellers
seen upon arrivals this can be written as

f (τ ; t ) =
∞∑
n=0

πn (t )дn+1 (τ ), (11)

where дn (τ ) denotes the sojourn time density given n travellers
seen upon arrival, which follows an Erlang-(n + 1) distribution:

дn (τ ) =
µ (µτ )ne−τ µ

n!
. (12)

In order to obtain the unconditional sojourn time distribution we
substitute (9) and (12) into (11).

We are now in position to compute the expected cost incurred
by a traveler arriving at time t . In order to do so we evaluate the ex-
pected costs (7) by conditioning on the sojourn time of the traveller
arriving at time t :

EC (t , λ) =α

∫ ∞
τ=0

τ f (τ ; t )dτ + β
∫ (t ∗−t )

τ=0
(t∗ − t − τ ) f (τ ; t )dτ

+ γ

∫ ∞
τ=t ∗−t

(t + τ − t∗) f (τ ; t )dτ
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In order to compute the integrals we discretize the sojourn time in
small intervals with length ∆ to obtain the following approximation:

EC (t , λ) ≈α∆
∞∑
k=0

k∆f (k∆; t ) + β∆
⌊(t ∗−t )/∆⌋∑

k=0
(t∗ − t − k∆) f (k∆; t )

+ γ∆
∞∑

k= ⌈(t ∗−t )/∆⌉

(t + k∆ − t∗) f (k∆; t ). (13)

T = N
s t∗ α β γ

Set 1 60 0 1 0.5 2
Set 2 60 0 1 0.5 0.5
Set 3 60 0 1 0.75 0.5

Table 1: Parameter sets for numerical experiments.

To illustrate this procedure, we compute the expected costs in
the stochastic model for the arrival rate λf given by the Wardrop
equilibrium (2). In Figure 2 we plot these costs EC (t , λf ) over time,
for each parameter set defined in Table 1. For each parameter set we
vary the value of N and s such that N /s remains constant. We see
from Figure 2 that EC (t , λf ) varies significantly between travellers,
in particular putting travellers arriving towards the end of the
busy period at a disadvantage. This demonstrates that the Wardrop
equilibrium is not an accurate equilibrium concept in a realistic
setting with stochasticity. As expected, the error is the largest when
N is small and disappears as N grows large.

In Figure 3 we plot the decomposition of the costs EC (t , λf )
into its three components: waiting, early arrival and tardiness. This
figure suggests that the large increase in expected costs just before
the peak moment is due to the combination of costs for late and
early arrival, whereas only early or late costs are encountered in
the deterministic model. Moreover, at the end of the bottleneck
period in the stochastic model, the queue may not disappear at time
tq′ , giving travellers additional costs α + γ for every unit of time
spent waiting.

3.2 Stochastic equilibrium
Having demonstrated that the Wardrop equilibrium fails to provide
equal costs for all travellers in a stochastic setting, we now present
a numerical scheme to determine the equilibrium arrival rate for
the stochastic model. That is, we aim to find equilibrium costs cs
and an time-dependent arrival function λ such that EC (t , λ) = cs
for all t with λ(t ) > 0.

Our numerical scheme consists of two phases: first we describe
a procedure to obtain an arrival rate λ that satisfies

EC (t , λ) = c (14)

for any costs c > 0. We then scale the arrival rate and the costs to
ensure that in expectation N travellers arrive during the bottleneck
period. We use the Wardrop equilibrium costs cf from (5) as a
starting point.

Given target costs c , we can extract the start of the stochastic
bottleneck period t0 using the observation that the first traveller to
arrive likely incurs no costs for being late. Instead, the traveller is
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(a) Cost function with parameter set 1.
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(c) Cost function with parameter set 3.

Figure 2: Expected costs EC (t , λf ) for the stochastic model
with the arrival rate of the Wardrop equilibrium for differ-
ent cost parameters function and total number of travellers
N .

penalized for being early, and for his or her own service time. We
solve

β (t∗ − t0 − EW (t0)) + αEW (t0) = c, (15)
where EW (t0) = 1/s as it only depends on the service time duration.
Solving this we obtain

t0 = t∗ −
β − α + sc

sβ
. (16)

We discretise time into small intervals of length ∆ in order to
find the time-dependent arrival rate that satisfies (14). We do so
iteratively, exploiting the observation that EC (t , λ) only depends
on λ(u) for t0 ≤ u ≤ t , due to fact that travellers are served in order



Modelling user behaviour at a stochastic road traffic bottleneck VALUETOOLS 2017, December 5–7, 2017, Venice, Italy

−40 −30 −20 −10 0 10
0

10

20

30

40

50

t

E
[C

]

 

 

Total costs

Waiting time costs

Early arrival cost

Late arrival cost

Figure 3: Decomposition ofC (t , λf ), with parameter set 1 and
N = 60.

of arrival. We let t ≥ t0 and assume that λ is such that EC (u, λ) = c
for all t0 ≤ u ≤ t . We use this to determine the correct arrival rate
for time t + ∆.

In particular, we initialize λ(t + ∆) = λ(t ) and then adjust the
arrival rate by small increments x until we obtain EC (u + ∆, λ) = c
within some small error bound ϵ . The direction of the increments
can be obtained from the observation that the cost function is
increasing for larger arrival rate λ(t ). In case of an early arrival the
costs change by x∆

s (α −β ), where α > β . In case of a late arrival the
costs change by x∆

s (α + γ ) which is positive as well. We continue
this procedure until we first hit a time t1 such that λ(t1) = 0.

The procedure described above yields an arrival rate λ such that
EC (t ) = c for all t ∈ [t0, t1], but may not in expectation result in
the arrival of N travellers:

∆

t1∑
t=t0

λ(t ) = N . (17)

To leverage this procedure to obtain the equilibrium arrival rate
for N travellers we modify the target costs c , or equivalently, the
bottleneck starting time t0.

Based on the starting point t ′0 and number of travellers N ′ ob-
tained from an iteration of the algorithm described above, we de-
termine the new starting point by adding the expected service time
of the difference in arrivals (N − N ′)/s:

t0 = t ′0 − (N − N ′)/s . (18)

The corresponding equilibrium costs can be computed by (16). We
adjust the starting point until |N − N ′ | < ϵ , for ϵ small. The entire
numerical procedure is summarized in pseudo code in Algorithm 1.

Using Algorithm 1 we can compute the stochastic equilibrium
arrival rate. We plot this in Figure 4 for parameter set 1 from Table 1
and for various values of N and s , keeping N /s constant. The cor-
responding Wardrop equilibrium is shown for comparison. From
Figure 4a we observe that instead of a sudden transition between
the high and low arrival rate seen in the Wardrop equilibrium, the
stochastic equilibrium shows a gradual decrease. The smaller the
total number of travellers N , the smoother this gradual decrease
becomes. In Table 2 the start and end time relative to the corre-
sponding Wardrop equilibrium is shown, as well as the duration
of the stochastic equilibrium. Depending on the cost parameters,

Algorithm 1 Procedure to obtain stochastic equilibrium
1: Inputs:

N , s, t∗,α , β ,γ , ϵ,x
2: Initialize:

r1, r2, tq , tq′ , tn , cf from (3) and (4)
t0 ← tq
cs ← cf
λ(t0) ← r1
N ′ = 0

3: while |N ′ − N | > ϵ do
4: t ← t0
5: while λ(t ) > 0 do
6: t ← t + ∆
7: λ(t ) ← λ(t − ∆)
8: while |EC (t , λ(t ) − cs ) | > ϵ ) do
9: if EC (t , λ(t ) − cs ) > 0 then
10: λ(t ) ← λ(t ) − x
11: else EC (t , λ(t ) − cs ) < 0
12: λ(t ) ← λ(t ) + x
13: end if
14: obtain EC (t , λ) from (13)
15: end while
16: end while
17: N ′ ← ∆

∑t1
t=t0

λ(t )

18: t0 ← t0 − (N − N ′)/s
19: cs ← β (t∗ − t0 +

1
s ) +

α
s

20: end while
21: t1 ← t

the stochastic bottleneck period can be larger or smaller than the
period of the Wardop equilibrium, which is 60 for all three param-
eter sets. The last column shows the relative increase in costs for
the stochastic equilibrium cs (N ) in comparison to the Wardrop
equilibrium cf . We visualised this in Figure 4b for parameter set 1
to show the impact for small values of N , we see that cs (N ) → cf
for N → ∞, as expected. We see empirically that the computation
time for tthe stochastic equilibrium grows linearly in N , so there is
a trade-off between the computational effort and the benefits from
the stochastic equilibrium when N becomes large.

We can use the stochastic equilibrium to investigate the un-
certainty over time by plotting the mean waiting time against its
standard deviation, see Figure 5. We observe that both the mean
and standard deviation of the waiting time increase until peak
congestion is reached, after which waiting time decreases but the
standard deviation keeps growing. Eventually the standard devia-
tion also decreases as the bottleneck dissappears. This suggests that
uncertainty at the end of the bottleneck period has a larger impact
than at the beginning. Similar results were shown by Fosgerau
in [8] known as the counter-clockwise looping phenomenon also
observed in empirical data [5].
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Figure 4: Impact of the number of travellers N on the equi-
librium arrival rate over time and the impact on the average
cost.

N [t0, t1] − tq t1 − t0
E[C]
cf

Set 1 60 [ -5.76 , 51.6 ] 57.4 12%
300 [ -2.16 , 56.2 ] 58.3 5%
600 [ -1.44 , 57.4 ] 58.8 3%
3000 [ -0.48 , 58.8 ] 59.3 1%
6000 [ -0.24 , 59.3 ] 59.5 1%

Set 2 60 [ -6.72 , 60.7 ] 67.4 22%
300 [ -2.88 , 60.2 ] 63.1 10%
600 [ -1.92 , 60.0 ] 61.9 6%
3000 [ -0.72 , 60.0 ] 60.7 2%
6000 [ -0.48 , 60.0 ] 60.5 2%

Set 3 60 [ -5.76 , 62.4 ] 68.2 24%
300 [ -2.40, 61.0 ] 63.4 10%
600 [ -1.68 , 60.7 ] 62.4 7%
3000 [ -0.72 , 60.5 ] 61.2 3%
6000 [ -0.48 , 60.2 ] 60.7 2%

Table 2: Comparing the stochastic and Wardrop equilib-
rium.

4 CLOSED-FORM EXPRESSION OF THE
EQUILIBRIUM

The results of Section 4 show the impact of uncertainty over the
bottleneck period. Our numerical procedure for computing the
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Figure 5: Mean waiting time against its standard deviation
over time.

stochastic equilibrium provide useful insights into its behavior,
but it lacks the qualitative insights of analytic expressions. In this
section we propose a closed-form expression for the stochastic
equilibrium.

In Figure 4 we observe that the arrival rate of the stochastic equi-
librium shows a gradual decrease between the rate at the beginning
and at end of the bottleneck period compared to the instantaneous
drop observed in the deterministic model. We propose to approxi-
mate this gradual decrease by a sigmoid function. These functions
are used in a wide range of fields, for instance in machine learning,
biology, and economics.

We use a special case of the Sigmoid function known as the
generalised logistic function, which was originally developed as a
function to model animal growth [19]. In particular, we choose the
following functional form:

f (t ) = A +
K −A

(1 + νe−B (t−M ) )1/ν
, t ∈ [t0, t1]. (19)

where A and K are the lower and upper asymptotes respectively, B
is the growth rate, ν > 0 represents the symmetry parameter and
M defines the point of inflection. We are interested in the period of
[t0, t1], which indicates the start and end of the bottleneck period.

In order to choose the correct parameter values we draw inspira-
tion from the numerical approximation of the stochastic equilibrium.
As we see in Figure 4, the values of the lower and upper asymptotes
of the stochastic equilibrium correspond to the lower and upper
rate of the Wardrop equilibrium, respectively, and we choose

K = r1, A = r2. (20)

Furthermore, we observe that the inflection point roughly coincides
with time tn of the Wardrop equilibrium, shifted by the difference
in starting points of the Wardrop equilibrium and the stochastic
equilibrium tq − t0. This is because the waiting time also starts to
decrease at this point. Therefore we set

M = tn − (tq − t0). (21)
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The symmetry parameter ν can be related to the ratio between
fraction of time the Wardrop equilibrium prescribes the high rate
(tn − tq )/(tq′ − tq ). Multiplying this by the difference in rates of
the Wardrop equilibrium we arrive at

ν =
(r1 − r2)

s

tq′ − tq

tn − tq
. (22)

In contrast to the other parameters, the growth parameter B can-
not be readily estimated by relating it to the Wardrop equilibrium,
and instead we use nonlinear regression. To this end, first observe
from Figure 4 that the steepest descent of the stochastic equilibrium
is at the inflection pointM , and its derivative at this point k is equal
to

k :=
d
dt

f (t )
����t=M

= B (K −A) (1 + νe−B (t−M ) )
−1−ν
ν e−B (t−M ) ����t=M

= B (K −A) (1 + ν )
−1−ν
ν .

The K , A and ν can be obtained from (20) and (22), so once we
determine k we can compute B as

B =
−k (1 + ν )

−1−ν
ν

K −A
. (23)

From numerical results we can see that k depends on a combi-
nation of the cost parameters α , β and γ , the number of travellers
N , and the rate of service s . However this becomes a very compli-
cated function. Therefore, in our regression model we estimate the
growth rate B for only a few parameters for the most general form,
which is the standard cost value of Set 1 from Table 1. We keep
the ratio N /s fixed. Then we adjust the N and s values by taking
multiples of 60 for N , ranging from N ∈ [60, 3000] and s ∈ [1, 50].
For simplicity we divide N by 60 in our regression function. Ad-
ditionally, we vary α ∈ [β ,γ ] and use the waiting costs expressed
as

αperc =
α − β

γ − β
. (24)

The resulting values show a linear dependency when a log scaling
is applied. To fit our linear regression model, we thus have to solve

logk = a0 + a1loд(N /60) + a2loд(α ). (25)

We use a least square non-linear regression and obtain the following
values for the coefficients a0 = −0.0093 ≈ 0,a1 = −1.1896 and
a2 = 1.4242 ≈

√
2 and with relative residual 0.053. Thus we estimate

k by
k̂ = −α−1.1896

perc ∗ (N /60)
√

2. (26)

In Figure 6 we compare k̂ with the actual slope k . This slope is
computed based on our numerical approximation of the stochastic
equilibrium. Figure 6 shows that k̂ is a remarkably accurate estimate
for k , in particular for small values of N , which is the most relevant
regime. Note that the slope estimator k̂ is decreasing in N as ex-
pected, since as N grows large the stochastic model approaches the
deterministic model, where the equilibrium has an instantaneous
transition from r1 to r2.

By substituting k̂ from (26) into (23), along with our estimates
for K and A from (20) and ν from (22), we obtain an approximation
for B.

Having determined all parameters for our approximation of (19),
what remains is to find the correct time interval [t0, t1] during
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Figure 6: Comparison of the estimator k̂ (dashed) against the
real values k (solid).

which arrivals occur in the stochastic equilibrium. To this end, we
exploit the fact that the expected number of arrivals during the
bottleneck duration must add up to N , and that the expected cost
throughout must be equal. For simplicity, we do this assuming that
ν = 1, and use this result for general ν . Numerically, we find that
this approximation works well.

Define

F (t ) :=
∫

f (t )dt
����ν=1
= tA +

(K −A)

B
log(1 + eB (t−M ) ), (27)

then the fact that the expected number of arriving travellers must
equal N can be written as

F (t1) − F (t0) = N . (28)

Since the expected cost in equilibrium E[C (t )] must be the same
throughout the bottleneck duration t ∈ [t0, t1] we have that

E[C (t0)] = E[C (tn − tq + t0)]. (29)

We can approximate the costs at these two time instances t0 and
tn − tq + t0 as follows. Travellers arriving at time t0 would be the
first to enter the system, so its expected sojourn time would be 1

s
(its own service time), while it would arrive early by an amount of
time E[t∗ − t0 −X1], where X1 ∼ exp(s ) represents the service time
of the traveller. The cost for being late are negligible to the first
arrival, so by replacing X1 by its expectation we can approximate
the costs for an arrival at time t0 as

E[C (t0)] ≈
α

s
+ β (t∗ − t0 +

1
s
). (30)

In the deterministic bottleneck model the travellers arriving at
time tn depart from the bottleneck at exactly time t∗, so they only
incur waiting costs. The starting point of the stochastic equilibrium
is shifted by t0 − tq compared to that of the Wardrop equilibrium,
so the costs for travellers arriving at time tn + t0 − tq is dominated
by the waiting time, and we approximate E[C (tn − tq + t0)] ≈
αW (tn − tq + t0). In order to approximate the sojourn time at time
tn − tq + t0 we use that the expected number of arrivals is equal to
F (tn − tq + t0) − F (t0), while the expected service up to that time
is (tn − tq )s . If we also include the service of the traveller itself we
obtain

E[C (tn −tq +t0)] ≈
α

s
(F (tn −tq +t0)−F (t0)+1− (tn −tq )s ). (31)
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Figure 7: Comparing the Wardrop equilibrium with the an-
alytic and numerical approximation of the stochastic equi-
librium by using the parameter values of Set 1 from Table 1
for N = 60.

The start and end times of the bottleneck period of the stochas-
tic equilibrium can be obtained by numerically solving t0 and t1
from (28) and (31).

We plot our approximation in Figure 7.We can see that the closed
form approximation closely follows the stochastic model, and that
it does a better job at equalizing the costs among the travellers
compared to the Wardrop equilibrium.

5 CONCLUSION
In this paper we presented a general model for predicting the strate-
gic user response to a bottleneck in road traffic. We first reviewed
the existing models and results, which rely mostly on deterministic
fluid models and Wardrop equilibria. To allow for more realism we
proposed to extend these models by considering travellers as dis-
crete entities, which may be subject to randomness. We presented a
numerical procedure to compute the equilibrium in this stochastic
model, and used these results to find a closed-form approximation
for this stochastic equilibrium. Numerically, we showed that this
approximation closely follows the equilibrium.

The stochastic bottleneck model gives insight into the effects of
strategic arrival behaviour in response to travel times uncertainty.
Our approach can be applied to the many extensions that exist of
the standard deterministic bottleneck model giving insight into the
impact of uncertainty in a broad range of transportation models.
Examples include heterogeneity among travellers’ departure time,
valuation of early and late arrival, and demand elasticity.
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