101 research outputs found

    Chlamydia psittaci: a relevant cause of community-acquired pneumonia in two Dutch hospitals.

    Get PDF
    Of all hospitalised community-acquired pneumonias (CAPs) only a few are known to be caused by Chlamydia psittaci. Most likely the reported incidence, ranging from of 0% to 2.1%, is an underestimation of the real incidence, since detection of psittacosis is frequently not incorporated in the routine microbiological diagnostics in CAP or serological methods are used

    Emergent multicellular life cycles in filamentous bacteria owing to density-dependent population dynamics

    Get PDF
    Filamentous bacteria are the oldest and simplest known multicellular life forms. By using computer simulations and experiments that address cell division in a filamentous context, we investigate some of the ecological factors that can lead to the emergence of a multicellular life cycle in filamentous life forms. The model predicts that if cell division and death rates are dependent on the density of cells in a population, a predictable cycle between short and long filament lengths is produced. During exponential growth, there will be a predominance of multicellular filaments, while at carrying capacity, the population converges to a predominance of short filaments and single cells. Model predictions are experimentally tested and confirmed in cultures of heterotrophic and phototrophic bacterial species. Furthermore, by developing a formulation of generation time in bacterial populations, it is shown that changes in generation time can alter length distributions. The theory predicts that given the same population growth curve and fitness, species with longer generation times have longer filaments during comparable population growth phases. Characterization of the environmental dependence of morphological properties such as length, and the number of cells per filament, helps in understanding the pre-existing conditions for the evolution of developmental cycles in simple multicellular organisms. Moreover, the theoretical prediction that strains with the same fitness can exhibit different lengths at comparable growth phases has important implications. It demonstrates that differences in fitness attributed to morphology are not the sole explanation for the evolution of life cycles dominated by multicellularity

    The N(1520) 3/2- helicity amplitudes from an energy-independent multipole analysis based on new polarization data on photoproduction of neutral pions

    Full text link
    New data on the polarization observables T, P, and H for the reaction γppπ0\gamma p \to p\pi^0 are reported. The results are extracted from azimuthal asymmetries when a transversely polarized butanol target and a linearly polarized photon beam are used. The data were taken at the Bonn electron stretcher accelerator ELSA using the CBELSA/TAPS detector. These and earlier data are used to perform a truncated energy-independent partial wave analysis in sliced-energy bins. This energy-independent analysis is compared to the results from energy-dependent partial wave analyses

    The polarization observables T, P, and H and their impact on γppπ0\gamma p \to p\pi^0 multipoles

    Full text link
    Data on the polarization observables T, P, and H for the reaction γppπ0\gamma p\to p\pi^0 are reported. Compared to earlier data from other experiments, our data are more precise and extend the covered range in energy and angle substantially. The results were extracted from azimuthal asymmetries measured using a transversely polarized target and linearly polarized photons. The data were taken at the Bonn electron stretcher accelerator ELSA with the CBELSA/TAPS detector. Within the Bonn-Gatchina partial wave analysis, the new polarization data lead to a significant narrowing of the error band for the multipoles for neutral-pion photoproduction

    New data on γpηp\vec{\gamma} \vec{p}\rightarrow \eta p with polarized photons and protons and their implications for NNηN^* \to N\eta decays

    Full text link
    The polarization observables T,E,P,HT, E, P, H, and GG in photoproduction of η\eta mesons off protons are measured for photon energies from threshold to W=2400W=2400\,MeV (TT), 2280 MeV (EE), 1620 MeV (P,HP, H), or 1820 MeV (GG), covering nearly the full solid angle. The data are compared to predictions from the SAID, MAID, J\"uBo, and BnGa partial-wave analyses. A refit within the BnGa approach including further data yields precise branching ratios for the NηN\eta decay of nucleon resonances. A NηN\eta-branching ratio of 0.33±0.040.33\pm 0.04 for N(1650)1/2N(1650)1/2^- is found, which reduces the large and controversially discussed NηN\eta-branching ratio difference of the two lowest mass JP=1/2J^P=1/2^--resonances significantly.Comment: 10 pages, 11 figure

    A Next-Generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics

    Get PDF
    The nature of dark matter and properties of neutrinos are among the mostpressing issues in contemporary particle physics. The dual-phase xenontime-projection chamber is the leading technology to cover the availableparameter space for Weakly Interacting Massive Particles (WIMPs), whilefeaturing extensive sensitivity to many alternative dark matter candidates.These detectors can also study neutrinos through neutrinoless double-beta decayand through a variety of astrophysical sources. A next-generation xenon-baseddetector will therefore be a true multi-purpose observatory to significantlyadvance particle physics, nuclear physics, astrophysics, solar physics, andcosmology. This review article presents the science cases for such a detector.<br

    A White Paper on keV Sterile Neutrino Dark Matter

    Get PDF
    We present a comprehensive review of keV-scale sterile neutrino Dark Matter,collecting views and insights from all disciplines involved - cosmology,astrophysics, nuclear, and particle physics - in each case viewed from boththeoretical and experimental/observational perspectives. After reviewing therole of active neutrinos in particle physics, astrophysics, and cosmology, wefocus on sterile neutrinos in the context of the Dark Matter puzzle. Here, wefirst review the physics motivation for sterile neutrino Dark Matter, based onchallenges and tensions in purely cold Dark Matter scenarios. We then round outthe discussion by critically summarizing all known constraints on sterileneutrino Dark Matter arising from astrophysical observations, laboratoryexperiments, and theoretical considerations. In this context, we provide abalanced discourse on the possibly positive signal from X-ray observations.Another focus of the paper concerns the construction of particle physicsmodels, aiming to explain how sterile neutrinos of keV-scale masses could arisein concrete settings beyond the Standard Model of elementary particle physics.The paper ends with an extensive review of current and future astrophysical andlaboratory searches, highlighting new ideas and their experimental challenges,as well as future perspectives for the discovery of sterile neutrinos

    Internal Transcribed Spacer 2 (nu ITS2 rRNA) Sequence-Structure Phylogenetics: Towards an Automated Reconstruction of the Green Algal Tree of Life

    Get PDF
    L). Some have advocated the use of the nuclear-encoded, internal transcribed spacer two (ITS2) as an alternative to the traditional chloroplast markers. However, the ITS2 is broadly perceived to be insufficiently conserved or to be confounded by introgression or biparental inheritance patterns, precluding its broad use in phylogenetic reconstruction or as a DNA barcode. A growing body of evidence has shown that simultaneous analysis of nucleotide data with secondary structure information can overcome at least some of the limitations of ITS2. The goal of this investigation was to assess the feasibility of an automated, sequence-structure approach for analysis of IT2 data from a large sampling of phylum Chlorophyta.Sequences and secondary structures from 591 chlorophycean, 741 trebouxiophycean and 938 ulvophycean algae, all obtained from the ITS2 Database, were aligned using a sequence structure-specific scoring matrix. Phylogenetic relationships were reconstructed by Profile Neighbor-Joining coupled with a sequence structure-specific, general time reversible substitution model. Results from analyses of the ITS2 data were robust at multiple nodes and showed considerable congruence with results from published phylogenetic analyses.Our observations on the power of automated, sequence-structure analyses of ITS2 to reconstruct phylum-level phylogenies of the green algae validate this approach to assessing diversity for large sets of chlorophytan taxa. Moreover, our results indicate that objections to the use of ITS2 for DNA barcoding should be weighed against the utility of an automated, data analysis approach with demonstrated power to reconstruct evolutionary patterns for highly divergent lineages

    A White Paper on keV sterile neutrino Dark Matter

    Get PDF
    We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved—cosmology, astrophysics, nuclear, and particle physics—in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterile neutrino Dark Matter arising from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. The paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos
    corecore