80 research outputs found

    Foraging habitat choice of White-tailed Tropicbirds revealed by fine-scale GPS tracking and remote sensing

    Get PDF
    Background The introduction of animal tracking technology has rapidly advanced our understanding of seabird foraging ecology. Tracking data is particularly powerful when combined with oceanographic information derived from satellite remote sensing, allowing insights into the functional mechanisms of marine ecosystems. While this framework has been used extensively over the last two decades, there are still vast ocean regions and many seabird species for which information is scarce, particularly in tropical oceans. Methods In this study we tracked the movement at high GPS recording frequency of 15 White-tailed Tropicbirds (Phaethon lepturus) during chick-rearing from a colony in Fernando de Noronha (offshore of Northeast Brazil). Flight behaviours of travelling and searching for food were derived from GPS data and examined in relation to satellite-sensed oceanographic variables (sea surface temperature, turbidity and chlorophyll-a concentration). Results White-tailed Tropicbirds showed marked preference for clear and warm sea surface waters, which are indicative of low primary productivity but are likely the best habitat for preying upon flying fish. Discussion These findings are consistent with previous studies showing that foraging habitat choices of tropical seabirds may not be driven by primary productivity, as has been widely shown for non-tropical species

    Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory

    Get PDF
    Atmospheric parameters, such as pressure (P), temperature (T) and density, affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of pressure and density. The former affects the longitudinal development of air showers while the latter influences the Moliere radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle Physic

    Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

    Get PDF
    Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{6×10196\times 10^{19}eV}. The anisotropy was measured by the fraction of arrival directions that are less than 3.13.1^\circ from the position of an active galactic nucleus within 75 Mpc (using the V\'eron-Cetty and V\'eron 12th12^{\rm th} catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (386+7)(38^{+7}_{-6})%, compared with 2121% expected for isotropic cosmic rays. This is down from the early estimate of (6913+11)(69^{+11}_{-13})%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201

    The Fluorescence Detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics Research Section

    Advanced functionality for radio analysis in the Offline software framework of the Pierre Auger Observatory

    Get PDF
    The advent of the Auger Engineering Radio Array (AERA) necessitates the development of a powerful framework for the analysis of radio measurements of cosmic ray air showers. As AERA performs "radio-hybrid" measurements of air shower radio emission in coincidence with the surface particle detectors and fluorescence telescopes of the Pierre Auger Observatory, the radio analysis functionality had to be incorporated in the existing hybrid analysis solutions for fluoresence and surface detector data. This goal has been achieved in a natural way by extending the existing Auger Offline software framework with radio functionality. In this article, we lay out the design, highlights and features of the radio extension implemented in the Auger Offline framework. Its functionality has achieved a high degree of sophistication and offers advanced features such as vectorial reconstruction of the electric field, advanced signal processing algorithms, a transparent and efficient handling of FFTs, a very detailed simulation of detector effects, and the read-in of multiple data formats including data from various radio simulation codes. The source code of this radio functionality can be made available to interested parties on request.Comment: accepted for publication in NIM A, 13 pages, minor corrections to author list and references in v

    Search for First Harmonic Modulation in the Right Ascension Distribution of Cosmic Rays Detected at the Pierre Auger Observatory

    Get PDF
    We present the results of searches for dipolar-type anisotropies in different energy ranges above 2.5×10172.5\times 10^{17} eV with the surface detector array of the Pierre Auger Observatory, reporting on both the phase and the amplitude measurements of the first harmonic modulation in the right-ascension distribution. Upper limits on the amplitudes are obtained, which provide the most stringent bounds at present, being below 2% at 99% C.L.C.L. for EeV energies. We also compare our results to those of previous experiments as well as with some theoretical expectations.Comment: 28 pages, 11 figure

    Triterpenos pentacíclicos e esteróides da casca do uchi (Sacoglottis uchi, Humiriaceae)

    Get PDF
    The ethanol extract from stem bark of Sacoglottis uchi Huber (popularly known as \x93uchi\x94 in the Amazon Region) was submitted to chromatographic fractionation. The dichloromethane fractions provided the pentacyclic triterpene 3-oxo-friedelin (1). The dichloromethane:methanol fractions provided the pentacyclic triterpenes pseudotaraxasterol (2), lupeol (3), a-amyrin (4), betulin (5), and methyl 2ß,3ß-dihydroxy-urs-12-en-28-oate (6) and a mixture of the steroids sitosterol (7) and stigmasterol (8). Their chemical structures were determined by NMR spectroscopy and comparison with spectroscopic data from the literature. All compounds are described for the first time in this species.O extrato etanólico da casca do caule de Sacoglottis uchi Huber (conhecida popularmente como \x93uchi\x94 na Amazônia) foi submetido a fracionamento cromatográfico. As frações eluídas com diclorometano forneceram o triterpeno pentacíclico 3-oxo-friedelina (1). As frações em diclorometano:metanol forneceram os triterpenos pentacíclicos pseudotaraxasterol (2), lupeol (3), a-amirina (4), betulina (5) e 2ß,3ß-di-hidroxi-urs-12-en-28-oato de metila (6), além de uma mistura dos esteróides sitosterol (7) e estigmasterol (8). Suas estruturas químicas foram determinadas por espectroscopia de RMN e comparação com os dados espectroscópicos descritos na literatura. Todas as substâncias isoladas são descritas pela primeira vez nesta espécie
    corecore