2,129 research outputs found

    Assessment of bone-regeneration using adipose-derived stem cells in critical-size alveolar ridge defects: an experimental study in a dog model

    Get PDF
    Purpose: To assess bone regeneration potential of a fibronectin- and adipose-derived stem cell-covered ceramic biomaterial in three-wall critical size alveolar ridge defects. Materials and methods: In 18 dogs, four dehiscence-type and critical size defects were created surgically in the edentulous alveolar ridge. Defects were randomly regenerated using biomaterials coated with particulate ß-tricalcium phosphate (ß-TCP), ß-TCP with fibronectin (Fn) (ß-TCP-Fn), and ß-TCP with a combination of Fn and autologous adipose-derived stem cells (ADSCs) (ß-TCP-Fn-ADSCs), leaving one defect as control. The animals were divided into three groups according to the time of euthanasia (1, 2, or 3 months of healing). Results: At the time of sacrifice, statistically significant differences between the four types of defects in the total area of bone regeneration, percentage of neoformed bone matrix, medullary space, or contact between particulate biomaterial and neoformed bone matrix were not found. All defects showed a significant increase in neoformed bone matrix as sacrifice was delayed, but a uniform pattern was not followed. Only defects treated with ß-TCP-Fn-ADSCs showed a significant increase in the bone regeneration area when animals sacrificed at 3 months were compared to those sacrificed at 1 month (P = .006). Conclusion: The use of ADSCs in bone regeneration processes of critical size defects of the alveolar ridge did not entail an advantage regarding greater bone regeneration as compared with other biomaterials. However, the use of ß-TCP coated with a combination of Fn and ADSCs appeared to favor stabilization of the regenerated area, allowing a more efficient maintenance of the space at 3 months of healing

    Cell cycle regulation by the Wee1 Inhibitor PD0166285, Pyrido [2,3-d] pyimidine, in the B16 mouse melanoma cell line

    Get PDF
    BACKGROUND: Wee1 kinase plays a critical role in maintaining G2 arrest through its inhibitory phosphorylation of cdc2. In previous reports, a pyridopyrimidine molecule PD0166285 was identified to inhibit Wee1 activity at nanomolar concentrations. This G2 checkpoint abrogation by PD0166285 was demonstrated to kill cancer cells, there at a toxic highest dose of 0.5 μM in some cell lines for exposure periods of no longer than 6 hours. The deregulated cell cycle progression may have ultimately damaged the cancer cells. We herein report one of the mechanism by which PD0166285 leads to cell death in the B16 mouse melanoma cell line. METHODS: Tumor cell proliferation was determined by counting cell numbers. Cell cycle distribution was determined by flow cytometry. Morphogenesis analysis such as microtubule stabilization, Wee1 distribution, and cyclin B location were observed by immunofluorescence confocal microscopy. An immunoblot analysis of cdc2-Tyr15, cyclin D, E, p16, 21, 27, and Rb. A real-time PCR of the mRNA of cyclin D were completed. RESULTS: In our experiment, B16 cells also dramatically abrogated the G2 checkpoint and were found to arrest in the early G1 phase by treatment with 0.5 μM for 4 hours observed by flow cytometry. Cyclin D mRNA decreased within 4 hours observed by Real-time PCR. Rb was dephosphrylated for 24 hours. However, B16 cells did not undergo cell death after 0.5 μM treatment for 24 hours. Immnofluoscence microscopy showed that the cells become round and small in the morphogenesis. More interesting phenomena were that microtubule stabilization was blocked, and Wee1 distribution was restricted after treatment for 4 hours. CONCLUSION: We analyzed the effect of Wee1 inhibitor PD0166285 described first by Wang in the G2 transition in the B16 melanoma cell line. The inhibitor PD0166285 abrogated G2/M checkpoint inducing early cell division. Moreover, we found that the treatment of cells with the inhibitor is related to microtubule stabilization and decrease in cyclin D transcription. These effects together suggest that Wee1 inhibitor may thus be a potentially useful anti-cancer therapy

    Executive summary: Diagnosis and Treatment of Catheter-Related Bloodstream Infection: Clinical Guidelines of the Spanish Society of Clinical Microbiology and Infectious Diseases (SEIMC) and the Spanish Society of Intensive Care Medicine and Coronary Units (SEMICYUC)

    Get PDF
    Catheter-related bloodstream infections (CRBSI) constitute an important cause of hospital-acquired infection associated with morbidity, mortality, and cost. The aim of these guidelines is to provide updated recommendations for the diagnosis and management of CRBSI in adults. Prevention of CRBSI is excluded. Experts in the field were designated by the two participating Societies (Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica and the Sociedad Española de Medicina Intensiva, Crítica y Unidades Coronarias). Short-term peripheral venous catheters, non-tunneled and long-term central venous catheters, tunneled catheters and hemodialysis catheters are covered by these guidelines. The panel identified 39 key topics that were formulated in accordance with the PICO format. The strength of the recommendations and quality of the evidence were graded in accordance with ESCMID guidelines. Recommendations are made for the diagnosis of CRBSI with and without catheter removal and of tunnel infection. The document establishes the clinical situations in which a conservative diagnosis of CRBSI (diagnosis without catheter removal) is feasible. Recommendations are also made regarding empirical therapy, pathogen-specific treatment (coagulase-negative staphylococci, Sthaphylococcus aureus, Enterococcus spp, Gram-negative bacilli, and Candida spp), antibiotic lock therapy, diagnosis and management of suppurative thrombophlebitis and local complications

    Daily feeding and protein metabolism rhythms in Senegalese sole post-larvae

    Get PDF
    Fish hatcheries must adapt larval feeding protocols to feeding behavior and metabolism patterns to obtain more efficient feed utilization. Fish larvae exhibit daily ingesting rhythms rather than ingesting food continuously throughout the day. The aim of this study was to determine the daily patterns of feed intake, protein digestibility, protein retention and catabolism in Senegalese sole post-larvae (Solea senegalensis; 33 days post-hatching) using C-14-labeled Artemia protein and incubation in metabolic chambers. Sole post-larvae were fed at 09: 00, 15: 00, 21: 00, 03: 00 and 09: 00+1 day; and those fed at 09: 00, 21: 00, 03: 00 and 09: 00+1 day showed significantly higher feed intake than post-larvae fed at 15: 00 h (P=0.000). Digestibility and evacuation rate of ingested protein did not change during the whole cycle (P=0.114); however, post-larvae fed at 21: 00 and 03: 00 h showed the significantly highest protein retention efficiency and lowest catabolism (P=0.002). Therefore, results confirm the existence of daily rhythmicity in feeding activity and in the utilization of the ingested nutrients in Senegalese sole post-larvae.Fundacao para a Ciencia e a Tecnologia (FCT; Portugal) [CCMAR/Multi/04326/2013, 310305/FEP/71, IF/00482/2014/CP1217/CT0005]; PROMAR Program; Fundo Regional para a Ciencia e Tecnologia (FEDER); Ministerio de Economia y Competitividad (MINECO; Spain) by project EFISHDIGEST [AGL2014-52888-R]; FEDER/European Region Development Fund (ERDF); Ministerio de Economia y Competitividad (Spain) [BES-2012-051956]; European Social Fund under the Operational Programme for the Enhancement of Human Potentialinfo:eu-repo/semantics/publishedVersio

    The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription

    Get PDF
    The ability to interpret daily and seasonal alterations in light and temperature signals is essential for plant survival. This is particularly important during seedling establishment when the phytochrome photoreceptors activate photosynthetic pigment production for photoautotrophic growth. Phytochromes accomplish this partly through the suppression of phytochrome interacting factors (PIFs), negative regulators of chlorophyll and carotenoid biosynthesis. While the bZIP transcription factor long hypocotyl 5 (HY5), a potent PIF antagonist, promotes photosynthetic pigment accumulation in response to light. Here we demonstrate that by directly targeting a common promoter cis-element (G-box), HY5 and PIFs form a dynamic activation-suppression transcriptional module responsive to light and temperature cues. This antagonistic regulatory module provides a simple, direct mechanism through which environmental change can redirect transcriptional control of genes required for photosynthesis and photoprotection. In the regulation of photopigment biosynthesis genes, HY5 and PIFs do not operate alone, but with the circadian clock. However, sudden changes in light or temperature conditions can trigger changes in HY5 and PIFs abundance that adjust the expression of common target genes to optimise photosynthetic performance and growth

    Effectiveness of an intervention for improving drug prescription in primary care patients with multimorbidity and polypharmacy:Study protocol of a cluster randomized clinical trial (Multi-PAP project)

    Get PDF
    This study was funded by the Fondo de Investigaciones Sanitarias ISCIII (Grant Numbers PI15/00276, PI15/00572, PI15/00996), REDISSEC (Project Numbers RD12/0001/0012, RD16/0001/0005), and the European Regional Development Fund ("A way to build Europe").Background: Multimorbidity is associated with negative effects both on people's health and on healthcare systems. A key problem linked to multimorbidity is polypharmacy, which in turn is associated with increased risk of partly preventable adverse effects, including mortality. The Ariadne principles describe a model of care based on a thorough assessment of diseases, treatments (and potential interactions), clinical status, context and preferences of patients with multimorbidity, with the aim of prioritizing and sharing realistic treatment goals that guide an individualized management. The aim of this study is to evaluate the effectiveness of a complex intervention that implements the Ariadne principles in a population of young-old patients with multimorbidity and polypharmacy. The intervention seeks to improve the appropriateness of prescribing in primary care (PC), as measured by the medication appropriateness index (MAI) score at 6 and 12months, as compared with usual care. Methods/Design: Design:pragmatic cluster randomized clinical trial. Unit of randomization: family physician (FP). Unit of analysis: patient. Scope: PC health centres in three autonomous communities: Aragon, Madrid, and Andalusia (Spain). Population: patients aged 65-74years with multimorbidity (≥3 chronic diseases) and polypharmacy (≥5 drugs prescribed in ≥3months). Sample size: n=400 (200 per study arm). Intervention: complex intervention based on the implementation of the Ariadne principles with two components: (1) FP training and (2) FP-patient interview. Outcomes: MAI score, health services use, quality of life (Euroqol 5D-5L), pharmacotherapy and adherence to treatment (Morisky-Green, Haynes-Sackett), and clinical and socio-demographic variables. Statistical analysis: primary outcome is the difference in MAI score between T0 and T1 and corresponding 95% confidence interval. Adjustment for confounding factors will be performed by multilevel analysis. All analyses will be carried out in accordance with the intention-to-treat principle. Discussion: It is essential to provide evidence concerning interventions on PC patients with polypharmacy and multimorbidity, conducted in the context of routine clinical practice, and involving young-old patients with significant potential for preventing negative health outcomes. Trial registration: Clinicaltrials.gov, NCT02866799Publisher PDFPeer reviewe

    A novel Rac-dependent checkpoint in B cell development controls entry into the splenic white pulp and cell survival

    Get PDF
    Rac1 and Rac2 GTPases transduce signals from multiple receptors leading to cell migration, adhesion, proliferation, and survival. In the absence of Rac1 and Rac2, B cell development is arrested at an IgD− transitional B cell stage that we term transitional type 0 (T0). We show that T0 cells cannot enter the white pulp of the spleen until they mature into the T1 and T2 stages, and that this entry into the white pulp requires integrin and chemokine receptor signaling and is required for cell survival. In the absence of Rac1 and Rac2, transitional B cells are unable to migrate in response to chemokines and cannot enter the splenic white pulp. We propose that loss of Rac1 and Rac2 causes arrest at the T0 stage at least in part because transitional B cells need to migrate into the white pulp to receive survival signals. Finally, we show that in the absence of Syk, a kinase that transduces B cell antigen receptor signals required for positive selection, development is arrested at the same T0 stage, with transitional B cells excluded from the white pulp. Thus, these studies identify a novel developmental checkpoint that coincides with B cell positive selection

    Evaluation of Microorganisms Cultured from Injured and Repressed Tissue Regeneration Sites in Endangered Giant Aquatic Ozark Hellbender Salamanders

    Get PDF
    Investigation into the causes underlying the rapid, global amphibian decline provides critical insight into the effects of changing ecosystems. Hypothesized and confirmed links between amphibian declines, disease, and environmental changes are increasingly represented in published literature. However, there are few long-term amphibian studies that include data on population size, abnormality/injury rates, disease, and habitat variables to adequately assess changes through time. We cultured and identified microorganisms isolated from abnormal/injured and repressed tissue regeneration sites of the endangered Ozark Hellbender, Cryptobranchus alleganiensis bishopi, to discover potential causative agents responsible for their significant decline in health and population. This organism and our study site were chosen because the population and habitat of C. a. bishopi have been intensively studied from 1969–2009, and the abnormality/injury rate and apparent lack of regeneration were established. Although many bacterial and fungal isolates recovered were common environmental organisms, several opportunistic pathogens were identified in association with only the injured tissues of C.a. bishopi. Bacterial isolates included Aeromonas hydrophila, a known amphibian pathogen, Granulicetella adiacens, Gordonai terrae, Stenotrophomonas maltophilia, Aerococcus viridans, Streptococcus pneumoniae and a variety of Pseudomonads, including Pseudomonas aeruginosa, P. stutzeri, and P. alcaligenes. Fungal isolates included species in the genera Penicillium, Acremonium, Cladosporium, Curvularia, Fusarium, Streptomycetes, and the Class Hyphomycetes. Many of the opportunistic pathogens identified are known to form biofilms. Lack of isolation of the same organism from all wounds suggests that the etiological agent responsible for the damage to C. a. bishopi may not be a single organism. To our knowledge, this is the first study to profile the external microbial consortia cultured from a Cryptobranchid salamander. The incidence of abnormalities/injury and retarded regeneration in C. a. bishopi may have many contributing factors including disease and habitat degradation. Results from this study may provide insight into other amphibian population declines
    corecore