38 research outputs found

    Effect of tree species mixture on earthworm communities on a continental scale

    Full text link
    The belowground food web represents a major part of associated biodiversity in forest ecosystems, and plays a significant role in the ecosystem processes of litter decomposition and nutrient turnover. Past research has demonstrated overwhelming evidence of strong tree species identity effects on earthworm communities. It has been proposed that increased plant community diversity would be beneficial to the abundance and diversity of the belowground food web, but effects of tree species diversity on earthworm communities have seldom been reported, and are inconclusive. In this study at continental scale we evaluated whether tree species diversity positively affects earthworm biomass and diversity. For this purpose the FunDivEUROPE Exploratory Platform was used with 209 plots in 6 regions well spread over Europe with a low within-region site variability, but a within-region tree species diversity gradient from monocultures to 3 or 4 species plots. In every plot earthworms were sampled using a combined method of mustard extraction and hand sorting of litter and a soil monolith. Data are being analysed with multivariate tools and mixed effects models. First results suggest only limited influence of tree diversity on the biomass of earthworm communities at continental scale. Tree diversity effects are weak, context specific and interacting with tree identity. In nutrient poor soils we found a negative tree diversity effect on earthworm biomass when deciduous monocultures are enriched with coniferous species, while in rich soils we found a positive tree diversity effect which could be related with the food security this provides to the earthworm community.FUNDIVEUROPE - Functional significance of forest biodiversity in Europ

    Tree identity rather than tree diversity drives earthworm communities in European forests

    Get PDF
    Given the key role of belowground biota on forest ecosystem functioning, it is important to identify the factors that influence their abundance and composition. However, the understanding of the ecological linkage between tree diversity and belowground biota is still insufficient. Here we investigated the influence of tree diversity (richness, True Shannon diversity index, functional diversity) and identity (proportion of evergreen leaf litter and leaf litter quality) on earthworm species richness and biomass at a continental and regional scale, using data from a Europe-wide forest research platform (FunDivEUROPE) spanning six major forest types. We found a marked tree identity effect at the continental scale, with proportion of evergreen leaf litter negatively affecting total earthworm biomass and species richness, as well as their biomass per functional group. Furthermore, there were clear litter quality effects with a latitudinal variation in trait-specific responses. In north and central Europe, earthworm biomass and species richness clearly increased with increasing litter nutrient concentrations (decreasing C:N ratio and increasing calcium concentration), whereas this influence of litter nutrients was absent or even reversed in southern Europe. In addition, although earthworms were unaffected by the number of tree species, tree diversity positively affected earthworm biomass at the continental scale through functional diversity of the leaf litter. By focusing on tree leaf litter traits, this study advanced our understanding of the mechanisms driving tree identity effects and supported previous findings that litter quality, as a proxy of tree identity, was a stronger driver of earthworm species richness and biomass than tree diversit

    Biotic predictors complement models of bat and bird responses to climate and tree diversity in European forests

    Get PDF
    Bats and birds are key providers of ecosystem services in forests. How climate and habitat jointly shape their communities is well studied, but whether biotic predictors from other trophic levels may improve bird and bat diversity models is less known, especially across large bioclimatic gradients. Here, we achieved multi-taxa surveys in 209 mature forests replicated in six European countries from Spain to Finland, to investigate the importance of biotic predictors (i.e., the abundance or activity of defoliating insects, spiders, earthworms and wild ungulates) for bat and bird taxonomic and functional diversity. We found that 9 out of 12 bird and bat diversity metrics were best explained when biotic factors were added to models including climate and habitat variables, with a mean gain in explained variance of 38% for birds and 15% for bats. Tree functional diversity was the most important habitat predictor for birds, while bats responded more to understorey structure. The best biotic predictors for birds were spider abundance and defoliating insect activity, while only bat functional evenness responded positively to insect activity. Accounting for potential biotic interactions between bats, birds and other taxa of lower trophic levels will help to understand how environmental changes along large biogeographical gradients affect higher-level predator diversity in forest ecosystems

    Jack-of-all-trades effects drive biodiversity-ecosystem multifunctionality relationships in European forests.

    Get PDF
    There is considerable evidence that biodiversity promotes multiple ecosystem functions (multifunctionality), thus ensuring the delivery of ecosystem services important for human well-being. However, the mechanisms underlying this relationship are poorly understood, especially in natural ecosystems. We develop a novel approach to partition biodiversity effects on multifunctionality into three mechanisms and apply this to European forest data. We show that throughout Europe, tree diversity is positively related with multifunctionality when moderate levels of functioning are required, but negatively when very high function levels are desired. For two well-known mechanisms, 'complementarity' and 'selection', we detect only minor effects on multifunctionality. Instead a third, so far overlooked mechanism, the 'jack-of-all-trades' effect, caused by the averaging of individual species effects on function, drives observed patterns. Simulations demonstrate that jack-of-all-trades effects occur whenever species effects on different functions are not perfectly correlated, meaning they may contribute to diversity-multifunctionality relationships in many of the world's ecosystems.The research leading to these results received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 265171.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms1110

    Llama-Derived Single Domain Antibodies to Build Multivalent, Superpotent and Broadened Neutralizing Anti-Viral Molecules

    Get PDF
    For efficient prevention of viral infections and cross protection, simultaneous targeting of multiple viral epitopes is a powerful strategy. Llama heavy chain antibody fragments (VHH) against the trimeric envelope proteins of Respiratory Syncytial Virus (Fusion protein), Rabies virus (Glycoprotein) and H5N1 Influenza (Hemagglutinin 5) were selected from llama derived immune libraries by phage display. Neutralizing VHH recognizing different epitopes in the receptor binding sites on the spikes with affinities in the low nanomolar range were identified for all the three viruses by viral neutralization assays. By fusion of VHH with variable linker lengths, multimeric constructs were made that improved neutralization potencies up to 4,000-fold for RSV, 1,500-fold for Rabies virus and 75-fold for Influenza H5N1. The potencies of the VHH constructs were similar or better than best performing monoclonal antibodies. The cross protection capacity against different viral strains was also improved for all three viruses, both by multivalent (two or three identical VHH) and biparatopic (two different VHH) constructs. By combining a VHH neutralizing RSV subtype A, but not subtype B with a poorly neutralizing VHH with high affinity for subtype B, a biparatopic construct was made with low nanomolar neutralizing potency against both subtypes. Trivalent anti-H5N1 VHH neutralized both Influenza H5N1 clade1 and 2 in a pseudotype assay and was very potent in neutralizing the NIBRG-14 Influenza H5N1 strain with IC50 of 9 picomolar. Bivalent and biparatopic constructs against Rabies virus cross neutralized both 10 different Genotype 1 strains and Genotype 5. The results show that multimerization of VHH fragments targeting multiple epitopes on a viral trimeric spike protein is a powerful tool for anti-viral therapy to achieve "best-in-class" and broader neutralization capacity

    Biotic homogenization can decrease landscape-scale forest multifunctionality.

    Get PDF
    Many experiments have shown that local biodiversity loss impairs the ability of ecosystems to maintain multiple ecosystem functions at high levels (multifunctionality). In contrast, the role of biodiversity in driving ecosystem multifunctionality at landscape scales remains unresolved. We used a comprehensive pan-European dataset, including 16 ecosystem functions measured in 209 forest plots across six European countries, and performed simulations to investigate how local plot-scale richness of tree species (α-diversity) and their turnover between plots (β-diversity) are related to landscape-scale multifunctionality. After accounting for variation in environmental conditions, we found that relationships between α-diversity and landscape-scale multifunctionality varied from positive to negative depending on the multifunctionality metric used. In contrast, when significant, relationships between β-diversity and landscape-scale multifunctionality were always positive, because a high spatial turnover in species composition was closely related to a high spatial turnover in functions that were supported at high levels. Our findings have major implications for forest management and indicate that biotic homogenization can have previously unrecognized and negative consequences for large-scale ecosystem multifunctionality.We thank the Hainich National Park administration as well as Felix Berthold and Carsten Beinhoff for support of this study and Gerald Kaendler and the Johann Heinrich von Thünen-Institut for providing access to the German National Forest Inventory data. The research leading to these results received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under Grant Agreement 265171.This is the final version of the article. It first appeared from the National Academy of Sciences via https://doi.org//10.1073/pnas.151790311

    Tree species diversity effects on soil microbial biomass, diversity and activity across European forest types

    Full text link
    Increasing tree species diversity in forests might contribute to ecosystem-service maintenance, as well as to the reconciliation of regulating, provisioning and supporting services within the frame of multifunctional and sustainable forestry. Individual tree species influence biogeochemical cycling through element deposition (throughfall, litterfall), and through microbial activities in the soil. Yet, the influence of mixing tree species on these ecosystem processes is unclear, in particular concerning the microbial diversity and activity in soils. Here we synthesize results from the Exploratory Platform of the FunDivEUROPE project (http://www.fundiveurope.eu/). This network of 209 comparative plots covering a tree diversity gradient of 1 to 5 tree species was established in existing mature forests in 6 European regions. These six focal regions represent a gradient of major European forest types from boreal to Mediterranean forests. We analysed the impact of tree species diversity and the role of other controlling factors on the metabolic diversity of soil bacteria (BIOLOG Ecoplate), soil microbial biomass (fumigation-extraction) and potential nitrification (shaken soil slurry) in the forest floor and the upper organo-mineral soil horizon. Mean values of microbial biomass carbon ranged from 240 (Poland) to 1762 (Germany) mg kg-1 in the forest floor and from 4197 (Italy) to 11207 (Finland) mg kg-1 in the upper organo-mineral horizon. Tree diversity and soil water content were important controlling factors. Statistical models predict microbial biomass to increase in both horizons by 7-8% with each step increase in tree diversity. Metabolic diversity of soil bacteria (% of substrates used) showed high variability both within and between sites. Further results analysed with mixed linear models will be presented and discussed.FUNDIVEUROPE - Functional significance of forest biodiversity in Europ

    Microbial biomass increases with tree species diversity in European forest soils

    Full text link
    Increasing tree species diversity in forests might contribute to ecosystem-service maintenance, as well as to the reconciliation of regulating, provisioning and supporting services within the frame of multifunctional and sustainable forestry. Individual tree species influence biogeochemical cycling through element deposition (throughfall, litterfall), and through microbial activities in the soil. Yet, the influence of mixing tree species on these ecosystem processes is unclear, in particular concerning the microbial diversity and activity in soils. Here we synthesize results from the Exploratory Platform of the FunDivEUROPE project (http://www.fundiveurope.eu/). This network of 209 comparative plots covering a tree diversity gradient of 1 to 5 tree species was established in existing mature forests in 6 European regions. These six focal regions represent a gradient of major European forest types from boreal to Mediterranean forests. We analysed the impact of tree species diversity and the role of other controlling factors on the metabolic diversity of soil bacteria (BIOLOG Ecoplate), soil microbial biomass (fumigation-extraction) and potential nitrification (shaken soil slurry) in the forest floor and the upper organo-mineral soil horizon. Mean values of microbial biomass carbon ranged from 3264 (Italy) to 8717 (Finland) mg kg-1 in the forest floor. Statistical models predict microbial biomass to increase in both horizons by 7-8% with each step increase in tree diversity. Increased proportion of conifers was linked to a decrease in the metabolic diversity of soil bacteria. These tree diversity effects could be linked to soil drivers, such as pH, total and labile carbon and nitrogen.Functional significance of forest diversity in Europ

    Micro‐organism sampling

    No full text
    nrpages: 6status: publishe
    corecore