132 research outputs found

    SynthÚse et fonctionnalisation d'aldéhydes issus de la coupure d'esters gras insaturés

    Get PDF
    La valorisation du carbone renouvelable joue un rÎle croissant dans l'industrie chimique. Ces travaux rapportent l'utilisation d'huiles végétales comme matiÚres premiÚres en substitution de celles d'origine fossiles pour la synthÚse de monomÚres bio-sourcés destinés à la production de polyesters ou de polyamides.La production du 9 oxononanoate de méthyle, comme molécule plateforme, à partir d'esters méthyliques d'huile de colza a été réalisée par coupure oxydante (ozonolyse) sans solvant à température ambiante, suivie d'une réduction des intermédiaires par hydrogénation catalytique sous pression de H2 et de Pd(5)/C. Ainsi, le rendement en aldéhyde-ester est de 92%. Ce procédé a été appliqué à la synthÚse de molécules plateformes avec des longueurs de chaßnes de 9 à 13 atomes de carbone. Une matiÚre premiÚre renouvelable, des conditions de réaction douces, le recyclage du catalyseur et des co-produits non toxiques et valorisables ont permis de développer un procédé durable plus respectueux de l'environnement. La réduction de la fonction aldéhyde a été menée par hydrogénation catalytique, à 50C dans le méthanol, pour former l'alcool-ester correspondant. Le nickel de Raney ainsi que le Pd(5)/C offrent des rendements en 9-hydroxynonanoate de méthyle supérieurs à 90 %, mais le premier catalyseur conduit à un temps de réaction plus court. L'amination réductrice de la fonction aldéhyde a été menée avec succÚs à partir de NH3 gazeux et de Pd(5)/C, à 50C dans le méthanol, pour conduire majoritairement à la synthÚse de l'amino-ester primaire. La quantité de NH3(g) influence la sélectivité et au moins trois équivalents sont nécessaires pour limiter la formation d'amino-ester.A high interest has been devoted to the use of renewable carbon in the chemical industry. The goal of this work is the substitution of fossil oils by vegetable oils to synthesize bio sourced monomers for polyesters and polyamides production. The synthesis of methyl 9-oxononanoate as a platform molecule from fatty acid methyl esters of rapeseed oil was carried out in solvent free ozonolysis at room temperature. Intermediary ozonides was reduced to aldehydes by catalytic hydrogenation under H2 pressure and in the presence of Pd(5)/C catalyst giving a 92% carbonyl yield. This process was applied to a wide range of unsaturated esters with a chain length within 9 and 13 carbon atoms. This process allows the selective conversion of renewable materials to value added chemicals, in mild conditions and in the presence of a recyclable catalyst. Moreover, the co products are non toxic and valuable. Hydrogenation of aldehyde group was performed in the presence of methanol at 50C under hydrogen pressure. Raney Nickel and Pd(5)/C exhibit a yield to methyl 9 hydroxynonanoate higher than 90%. Reductive amination of the aldehyde functional group was investigated with success in the presence of NH3(g) and Pd(5)/C at 50C in methanol to produce primary amino ester. The amount of ammoniac is directly correlated to the selectivity of the reaction. As a consequence a minimum amount of 3 eq. of ammoniac is required to avoid the formation of secondary amino-ester.POITIERS-SCD-Bib. électronique (861949901) / SudocSudocFranceF

    Metal‐free selective synthesis of α,ÎČ‐unsaturated aldehydes from alkenes and formaldehyde catalyzed by dimethylamine

    Get PDF
    α,ÎČ‐Unsaturated aldehydes are important building blocks for the synthesis of a wide range of chemicals, including polymers. The synthesis of these molecules from cheap feedstocks such as alkenes remains a scientific challenge, mainly due to the low reactivity of alkenes. Here we report a selective and metal‐free access to α,ÎČ‐unsaturated aldehydes from alkenes with formaldehyde. This reaction is catalyzed by dimethylamine and affords α,ÎČ‐unsaturated aldehydes in yields of up to 80 %. By combining Density Functional Theory (DFT) calculations and experiments, we elucidate the reaction mechanism which is based on a cascade of hydride transfer, hydrolysis and aldolization reactions. The reaction can be performed under very mild conditions (30–50 °C), in a theoretically 100 % carbon‐economical fashion, with water as the only by‐product. The reaction was successfully applied to non‐activated linear 1‐alkenes, thus opening an access to industrially relevant α,ÎČ‐unsaturated aldehydes from cheap and widely abundant chemicals at large scale

    Unraveling the role of H 2 and NH 3 in the amination of isohexides over a Ru/C catalyst

    Get PDF
    The direct amination of biomass-derived isohexides with NH3 over a Ru/C catalyst was systematically investigated to understand the role of H2 and NH3 in the production of isohexide diamines vs aminoalcohols, i.e., the transformation of one or both OH-groups in isohexides into NH2 groups. Only aminoalcohols with an exo-OH group were generated starting from isosorbide, which contains both an exo-OH and an endo-OH group, while a moderate yield of diamines was obtained from isomannide with two endo-OH groups due to the higher reactivity of the latter. The main byproducts were identified, including a variety of N- and O-containing cyclic compounds, such as 2,5-dimethylpyrrolidine, that arise from a decomposition path driven by hydrolysis/hydrodeoxygenation of a tricyclic amine intermediate. By combining density functional theory calculations with microkinetics, NH3 was found to adsorb strongly on the catalyst surface and generate adsorbed NH2 and NH species with variable coverage depending on the temperature and the nominal H2/NH3 ratio. Isomerization of isohexides was greatly suppressed by adsorbed NH3. Meanwhile, adsorbed NH3 discouraged the formation of byproducts driven by competing side reactions promoted by H2. The H2/NH3 ratio, which conditions the distribution of NH2 and NH species on the Ru surface, influences drastically the catalytic performance

    Polar aprotic solvent-water mixture as the medium for catalytic production of hydroxymethylfurfural (HMF) from bread waste

    Get PDF
    Valorisation of bread waste for hydroxymethylfurfural (HMF) synthesis was examined in dimethyl sulfoxide (DMSO)-, tetrahydrofuran (THF)-, acetonitrile (ACN)-, and acetone-water (1:1v/v), under heating at 140°C with SnCl4 as the catalyst. The overall rate of the process was the fastest in ACN/H2O and acetone/H2O, followed by DMSO/H2O and THF/H2O due to the rate-limiting glucose isomerisation. However, the formation of levulinic acid (via rehydration) and humins (via polymerisation) was more significant in ACN/H2O and acetone/H2O. The constant HMF maxima (26-27mol%) in ACN/H2O, acetone/H2O, and DMSO/H2O indicated that the rates of desirable reactions (starch hydrolysis, glucose isomerisation, and fructose dehydration) relative to undesirable pathways (HMF rehydration and polymerisation) were comparable among these mediums. They also demonstrated higher selectivity towards HMF production over the side reactions than THF/H2O. This study differentiated the effects of polar aprotic solvent-water mediums on simultaneous pathways during biomass conversion

    Deep Eutectic Solvents: The Organic Reaction Medium of the Century

    Get PDF
    This microreview summarizes the use of deep eutectic solvents (DESs) and related melts in organic synthesis. Solvents of this type combine the great advantages of other proposed environmentally benign alternative solvents, such as low toxicity, high availability, low inflammability, high recyclability, low volatility, and low price, avoiding many disadvantages of the more modern media. The fact that many of the components of these mixtures come directly from nature assures their biodegradability and renewability. The classification and distribution of the reactions into different sections in this microreview, as well as the emphasis paid to their scope, easily allow a general reader to understand the actual state of the art and the great opportunities opened, not only for academic purposes but also for industry.This work was supported by the University of Alicante, Spain (VIGROB-173 and UAUSTI13-09)

    A systematic review of randomised controlled trials assessing effectiveness of prosthetic and orthotic interventions.

    Get PDF
    BACKGROUND: Assistive products are items which allow older people and people with disabilities to be able to live a healthy, productive and dignified life. It has been estimated that approximately 1.5% of the world's population need a prosthesis or orthosis. OBJECTIVE: The objective of this study was to systematically identify and review the evidence from randomized controlled trials assessing effectiveness and cost-effectiveness of prosthetic and orthotic interventions. METHODS: Literature searches, completed in September 2015, were carried out in fourteen databases between years 1995 and 2015. The search results were independently screened by two reviewers. For the purpose of this manuscript, only randomized controlled trials which examined interventions using orthotic or prosthetic devices were selected for data extraction and synthesis. RESULTS: A total of 342 randomised controlled trials were identified (319 English language and 23 non-English language). Only 4 of these randomised controlled trials examined prosthetic interventions and the rest examined orthotic interventions. These orthotic interventions were categorised based on the medical conditions/injuries of the participants. From these studies, this review focused on the medical condition/injuries with the highest number of randomised controlled trials (osteoarthritis, fracture, stroke, carpal tunnel syndrome, plantar fasciitis, anterior cruciate ligament, diabetic foot, rheumatoid and juvenile idiopathic arthritis, ankle sprain, cerebral palsy, lateral epicondylitis and low back pain). The included articles were assessed for risk of bias using the Cochrane Risk of Bias tool. Details of the clinical population examined, the type of orthotic/prosthetic intervention, the comparator/s and the outcome measures were extracted. Effect sizes and odds ratios were calculated for all outcome measures, where possible. CONCLUSIONS: At present, for prosthetic and orthotic interventions, the scientific literature does not provide sufficient high quality research to allow strong conclusions on their effectiveness and cost-effectiveness

    Catalytic Conversion of Carbohydrates to Furanic Derivatives in the Presence of Choline Chloride

    No full text
    International audienceThe synthesis of furanic derivatives (5-hydroxymethylfurfural (HMF), furfural. . .) from carbohydrates is of high interest for a wide range of applications. These reactions are carried out in the presence of various solvents, and among them choline chloride can be used. It is a salt that can form a low melting mixture with a carbohydrate (fructose, glucose. . .) or a deep eutectic mixture with carboxylic acid. A review of the studies performed in the conversion of carbohydrates to furanic derivatives in the presence of choline chloride is presented here with the advantages and drawbacks of this solvent. Choline chloride can enhance the selectivity to HMF by stabilizing effect and allows the conversion of highly concentrated feed. However, the extraction of the products from these solvents still needs improvement

    Depolymerization of cellulose to processable glucans by non-thermal technologies

    No full text
    International audienceIn this review, we discuss the recent progress made in the field of non-thermal technologies for the selective depolymerization of cellulose to processable glucans. The synergy of these technologies with catalysis, their impact on the cellulose structure and reactivity are discussed. Particularly, we highlight that these non-thermal technologies not only induce a fast cleavage of the ÎČ-1,4 glycosidic bond of cellulose but also promote random re-polymerization reactions yielding glucans with different types of glycosidic linkages (α/ÎČ-1,4, -1,3, -1,6, -1,2) and degrees of polymerization. Remarkably, these technologies are capable of converting cellulose to soluble glucans at low temperature (<70 °C), a pivotal aspect with respect to sugar stability and purity. Furthermore, the absence of solvent (and catalyst in some cases) greatly facilitates the isolation of glucans. Thanks to the presence of different types of glycosidic linkages, these glucans are much more prone to functionalization or catalytic conversion than cellulose, thus paving the way for the production of macromolecules that have a great market potential. The electricity requirement is one of the main cost drivers for the implementation of these technologies. Based on the market price of a few products, we wish to discuss the application domains of these technologies in terms of the business capabilities it may support. Mechanocatalysis, non-thermal atmospheric plasma and sonochemistry were selected as the main examples for the discussion

    Sustainable Amination of Bio-Based Alcohols by Hydrogen Borrowing Catalysis

    No full text
    In this review, we aim to give an overview of the use of the Borrowing Hydrogen (BH) methodology with bio-based alcohols. This methodology only forms water as a by-product, thus providing a sustainable way to amines, which have a large range of applications. This process is of particular interest when related to biomass due to the high abundance of alcohol functions in natural compounds. However, natural compounds often comprise multiple chemical functions that can change the reactivity of the substrate. This comprehensive review, comprising both homogeneous and heterogeneous catalysts, aims at summarizing the recent advancements in biomass amination for every class of substrate, highlighting the key parameters governing their reactivity and the remaining scientific hurdles. Even though most substrates have successfully been converted into the corresponding amines, reaction selectivity and functional group tolerance still need to be improved
    • 

    corecore