10 research outputs found

    Mining RNAseq data reveals dynamic metaboloepigenetic profiles in human, mouse and bovine pre-implantation embryos

    Get PDF
    Metaboloepigenetic regulation has been reported in stem cells, germ cells, and tumor cells. Embryonic metaboloepigenetics, however, have just begun to be described. Here we analyzed RNAseq data to characterize the metaboloepigenetic profiles of human, mouse, and bovine pre-implantation embryos. In embryos, metaboloepigenetic reprogramming was species-specific, varied with the developmental stage and was disrupted with in vitro culture. Metabolic pathways and gene expressions were strongly correlated with early embryo DNA methylation and were changed with in vitro culture. Although the idea that the in vitro environment may influence development is not new, there has been little progress on improving pregnancy rates after decades using in vitro fertilization. Hence, the present data will contribute to understanding how the in vitro manipulation affects the metaboloepigenetic status of early embryos, which can be used to establish culture strategies aimed at improving the in vitro environment and, consequently, pregnancy rates and offspring health

    Exploiting Microfluidics for Extracellular Vesicle Isolation and Characterization: Potential Use for Standardized Embryo Quality Assessment

    Get PDF
    Recent decades have seen a growing interest in the study of extracellular vesicles (EVs), driven by their role in cellular communication, and potential as biomarkers of health and disease. Although it is known that embryos secrete EVs, studies on the importance of embryonic EVs are still very limited. This limitation is due mainly to small sample volumes, with low EV concentrations available for analysis, and to laborious, costly and time-consuming procedures for isolating and evaluating EVs. In this respect, microfluidics technologies represent a promising avenue for optimizing the isolation and characterization of embryonic EVs. Despite significant improvements in microfluidics for EV isolation and characterization, the use of EVs as markers of embryo quality has been held back by two key challenges: (1) the lack of specific biomarkers of embryo quality, and (2) the limited number of studies evaluating the content of embryonic EVs across embryos with varying developmental competence. Our core aim in this review is to identify the critical challenges of EV isolation and to provide seeds for future studies to implement the profiling of embryonic EVs as a diagnostic test for embryo selection. We first summarize the conventional methods for isolating EVs and contrast these with the most promising microfluidics methods. We then discuss current knowledge of embryonic EVs and their potential role as biomarkers of embryo quality. Finally, we identify key ways in which microfluidics technologies could allow researchers to overcome the challenges of embryonic EV isolation and be used as a fast, user-friendly tool for non-invasive embryo selection

    Follicular extracellular vesicles enhance meiotic resumption of domestic cat vitrified oocytes

    Get PDF
    Extracellular vesicles (EVs) contain multiple factors that regulate cell and tissue function. However, understanding of their influence on gametes, including communication with the oocyte, remains limited. In the present study, we characterized the proteome of domestic cat (Felis catus) follicular fluid EVs (ffEV). To determine the influence of follicular fluid EVs on gamete cryosurvival and the ability to undergo in vitro maturation, cat oocytes were vitrified using the Cryotop method in the presence or absence of ffEV. Vitrified oocytes were thawed with or without ffEVs, assessed for survival, in vitro cultured for 26 hours and then evaluated for viability and meiotic status. Cat ffEVs had an average size of 129.3 ± 61.7 nm (mean ± SD) and characteristic doughnut shaped circular vesicles in transmission electron microscopy. Proteomic analyses of the ffEVs identified a total of 674 protein groups out of 1, 974 proteins, which were classified as being involved in regulation of oxidative phosphorylation, extracellular matrix formation, oocyte meiosis, cholesterol metabolism, glycolysis/gluconeogenesis, and MAPK, PI3K-AKT, HIPPO and calcium signaling pathways. Furthermore, several chaperone proteins associated with the responses to osmotic and thermal stresses were also identified. There were no differences in the oocyte survival among fresh and vitrified oocyte; however, the addition of ffEVs to vitrification and/or thawing media enhanced the ability of frozen-thawed oocytes to resume meiosis. In summary, this study is the first to characterize protein content of cat ffEVs and their potential roles in sustaining meiotic competence of cryopreserved oocytes

    Expressão gênica de protaminas e proteínas nucleares de transição em testículos bovinos

    Get PDF
    Protamines (PRM) are the major DNA-binding proteins in the sperm nucleus and can pack the DNA into less than 5% of the volume of a somatic cell nucleus. It is already known that bulls only have the PRM1 protein on mature spermatozoa while most mammals also have the PRM2. Transition nuclear proteins (Tnps) and PRMs are fundamental to DNA integrity. It has already been reported the influence of PRM on chromatin structures, generating low fertility. However, molecular mechanisms underlying these effects are not known. The relative expression of PRM1, PRM2, PRM3, Tnp1 and Tnp2 was determined by real time RT-PCR, using bovine specific primers and β-actin as endogenous control. Quantification of mRNA relative expression showed a higher expression of PRM1 compared to the other genes. The PRM3 mRNA had the lowest relative expression. A significant (p < 0.05) and positive correlation was found between PRM1 and PRM2 (r = 0.518), PRM2 and Tnp1 (r = 0.750), PRM2 and Tnp2 (r = 0.706), PRM3 and Tnp1 (r = 0.542), PRM3 and Tnp2 (r = 0.731) and between Tnp1 and Tnp2 (r = 0.820). Since most of the knowledge about protamine 2 in bovine is based on a work from 1990 and according to new studies we know that PRM1 and PRM2 are important to bull fertility, more research is needed to elucidate the real function of protamines on bovines.Protaminas (PRM) são as principais proteínas ligantes do DNA espermático e podem compactar o núcleo do espermatozoide em menos de 5% do volume de uma célula somática. Já se sabe que o touro produz apenas a PRM1 em espermatozoide maduro, enquanto a maioria dos mamíferos também produz a PRM2. As proteínas nucleares de transição (Tnps) e as PRMs são fundamentais para a integridade do DNA. Já foi descrita a influência das protaminas na estrutura da cromatina e a associação destas com a fertilidade. Entretanto, os mecanismos moleculares que geram mudanças na cromatina espermática são desconhecidos. A expressão relativa da PRM1, PRM2, PRM3, Tnp1 e Tnp2 foi determinada para dez testículos de touros oriundos de matadouros comerciais, utilizando a técnica de RT-PCR em tempo real, com primers específicos para bovinos e a β-actina como controle endógeno. Ao quantificar a expressão relativa do RNAm, detectou-se alta expressão relativa da PRM1, em comparação aos outros genes. A expressão relativa da PRM3 foi a menor de todos os genes. Foram encontradas correlações positivas e significantes (p < 0,05) entre PRM1 e PRM2 (r = 0,518), PRM2 e Tnp1 (r = 0,750), PRM2 e Tnp2 (r = 0,706), PRM3 e Tnp1 (r = 0,542), PRM3 e Tnp2 (r = 0,731) e entre Tnp1 e Tnp2 (r = 0,820). Visto que a maioria dos conhecimentos sobre a PRM2 estão baseados em um trabalho de 1990 e, de acordo com recentes estudos se sabe que a PRM1 e a PRM2 são importantes para a fertilidade do touro, mais estudos são necessários para determinar a real função das protaminas em touros

    The need for environmentally realistic studies on the health effects of terrestrial microplastics

    No full text
    Abstract Plastic pollution is now so widespread that microplastics are regularly detected in biological samples surveyed for their presence. Despite their pervasiveness, very little is known about the effects of microplastics on the health of terrestrial vertebrates. While emerging studies are showing that microplastics represent a potentially serious threat to animal health, data have been limited to in vivo studies on laboratory rodents that were force fed plastics. The extent to which these studies are representative of the conditions that animals and humans might actually experience in the real world is largely unknown. Here, we review 114 papers from the peer-reviewed literature in order to understand how the concentrations and types of microplastics being administered to rodents in lab studies compare to those found in terrestrial soils. From 73 in vivo lab studies, and 41 soil studies, we found that lab studies have heretofore fed rodents microplastics at concentrations that were hundreds of thousands of times greater than they would be exposed to in nature. Furthermore, health effects have been studied for only 20% of the microplastic polymers that are known to occur in soils. Plastic pollution is arguably one of the most pressing ecological and public health issues of our time, yet existing lab-based research on the health effects of terrestrial microplastics does not reflect the conditions that free-ranging vertebrates are actually experiencing. Going forward, performing more true-to-life research will be of the utmost importance to fully understand the impacts of microplastics and maintain the public’s faith in the scientific process. Graphical Abstrac

    Oviductal Extracellular Vesicles Improve Post-Thaw Sperm Function in Red Wolves and Cheetahs

    No full text
    Artificial insemination (AI) is a valuable tool for ex situ wildlife conservation, allowing the re-infusion and dissemination of genetic material, even after death of the donor. However, the application of AI to species conservation is still limited, due mainly to the poor survival of cryopreserved sperm. Recent work demonstrated that oviductal extracellular vesicles (oEVs) improved cat sperm motility and reduced premature acrosomal exocytosis. Here, we build on these findings by describing the protein content of dog and cat oEVs and investigating whether the incubation of cryopreserved red wolf and cheetah sperm with oEVs during thawing improves sperm function. Both red wolf and cheetah sperm thawed with dog and cat oEVs, respectively, had more intact acrosomes than the non-EV controls. Moreover, red wolf sperm thawed in the presence of dog oEVs better maintained sperm motility over time (>15%) though such an improvement was not observed in cheetah sperm. Our work demonstrates that dog and cat oEVs carry proteins important for sperm function and improve post-thaw motility and/or acrosome integrity of red wolf and cheetah sperm in vitro. The findings show how oEVs can be a valuable tool for improving the success of AI with cryopreserved sperm in threatened species.Arts and Sciences, Irving K. Barber School of (Okanagan)Non UBCReviewedFacult

    Potential Health and Environmental Risks of Three-Dimensional Engineered Polymers

    Get PDF
    Polymer engineering, such as in three-dimensional (3D) printing, is rapidly gaining popularity, not only in the scientific and medical fields but also in the community in general. However, little is known about the toxicity of engineered materials. Therefore, we assessed the toxicity of 3D-printed and molded parts from five different polymers commonly used for prototyping, fabrication of organ-on-a-chip platforms, and medical devices. Toxic effects of PIC100, E-Shell200, E-Shell300, polydimethylsiloxane, and polystyrene (PS) on early bovine embryo development, on the transactivation of estrogen receptors were assessed, and possible polymer-leached components were identified by mass spectrometry. Embryo development beyond the two-cell stage was inhibited by PIC100, E-Shell200, and E-Shell300 and correlated to the released amount of diethyl phthalate and polyethylene glycol. Furthermore, all polymers (except PS) induced estrogen receptor transactivation. The released materials from PIC100 inhibited embryo cleavage across a confluent monolayer culture of oviduct epithelial cells and also inhibited oocyte maturation. These findings highlight the need for cautious use of engineered polymers for household 3D printing and bioengineering of culture and medical devices and the need for the safe disposal of used devices and associated waste

    Potential Health and Environmental Risks of Three-Dimensional Engineered Polymers

    No full text
    Polymer engineering, such as in three-dimensional (3D) printing, is rapidly gaining popularity, not only in the scientific and medical fields but also in the community in general. However, little is known about the toxicity of engineered materials. Therefore, we assessed the toxicity of 3D-printed and molded parts from five different polymers commonly used for prototyping, fabrication of organ-on-a-chip platforms, and medical devices. Toxic effects of PIC100, E-Shell200, E-Shell300, polydimethylsiloxane, and polystyrene (PS) on early bovine embryo development, on the transactivation of estrogen receptors were assessed, and possible polymer-leached components were identified by mass spectrometry. Embryo development beyond the two-cell stage was inhibited by PIC100, E-Shell200, and E-Shell300 and correlated to the released amount of diethyl phthalate and polyethylene glycol. Furthermore, all polymers (except PS) induced estrogen receptor transactivation. The released materials from PIC100 inhibited embryo cleavage across a confluent monolayer culture of oviduct epithelial cells and also inhibited oocyte maturation. These findings highlight the need for cautious use of engineered polymers for household 3D printing and bioengineering of culture and medical devices and the need for the safe disposal of used devices and associated waste

    NEOTROPICAL CARNIVORES: a data set on carnivore distribution in the Neotropics

    No full text
    Mammalian carnivores are considered a key group in maintaining ecological health and can indicate potential ecological integrity in landscapes where they occur. Carnivores also hold high conservation value and their habitat requirements can guide management and conservation plans. The order Carnivora has 84 species from 8 families in the Neotropical region: Canidae; Felidae; Mephitidae; Mustelidae; Otariidae; Phocidae; Procyonidae; and Ursidae. Herein, we include published and unpublished data on native terrestrial Neotropical carnivores (Canidae; Felidae; Mephitidae; Mustelidae; Procyonidae; and Ursidae). NEOTROPICAL CARNIVORES is a publicly available data set that includes 99,605 data entries from 35,511 unique georeferenced coordinates. Detection/non-detection and quantitative data were obtained from 1818 to 2018 by researchers, governmental agencies, non-governmental organizations, and private consultants. Data were collected using several methods including camera trapping, museum collections, roadkill, line transect, and opportunistic records. Literature (peer-reviewed and grey literature) from Portuguese, Spanish and English were incorporated in this compilation. Most of the data set consists of detection data entries (n = 79,343; 79.7%) but also includes non-detection data (n = 20,262; 20.3%). Of those, 43.3% also include count data (n = 43,151). The information available in NEOTROPICAL CARNIVORES will contribute to macroecological, ecological, and conservation questions in multiple spatio-temporal perspectives. As carnivores play key roles in trophic interactions, a better understanding of their distribution and habitat requirements are essential to establish conservation management plans and safeguard the future ecological health of Neotropical ecosystems. Our data paper, combined with other large-scale data sets, has great potential to clarify species distribution and related ecological processes within the Neotropics. There are no copyright restrictions and no restriction for using data from this data paper, as long as the data paper is cited as the source of the information used. We also request that users inform us of how they intend to use the data

    Characterisation of microbial attack on archaeological bone

    Get PDF
    As part of an EU funded project to investigate the factors influencing bone preservation in the archaeological record, more than 250 bones from 41 archaeological sites in five countries spanning four climatic regions were studied for diagenetic alteration. Sites were selected to cover a range of environmental conditions and archaeological contexts. Microscopic and physical (mercury intrusion porosimetry) analyses of these bones revealed that the majority (68%) had suffered microbial attack. Furthermore, significant differences were found between animal and human bone in both the state of preservation and the type of microbial attack present. These differences in preservation might result from differences in early taphonomy of the bones. © 2003 Elsevier Science Ltd. All rights reserved
    corecore