129 research outputs found

    Simple flexible polymers in a spherical cage

    Full text link
    We report the results of Monte Carlo simulations investigating the effect of a spherical confinement within a simple model for a flexible homopolymer. We use the parallel tempering method combined with multi-histogram reweighting analysis and multicanonical simulations to investigate thermodynamical observables over a broad range of temperatures, which enables us to describe the behavior of the polymer and to locate the freezing and collapse transitions. We find a strong effect of the spherical confinement on the location of the collapse transition, whereas the freezing transition is hardly effected.Comment: 7 pages, 4 figure

    Scaling laws for random walks in long-range correlated disordered media

    Full text link
    We study the scaling laws of diffusion in two-dimensional media with long-range correlated disorder through exact enumeration of random walks. The disordered medium is modelled by percolation clusters with correlations decaying with the distance as a power law, rar^{-a}, generated with the improved Fourier filtering method. To characterize this type of disorder, we determine the percolation threshold pcp_{\text c} by investigating cluster-wrapping probabilities. At pcp_{\text c}, we estimate the (sub-diffusive) walk dimension dwd_{\text w} for different correlation exponents aa. Above pcp_{\text c}, our results suggest a normal random walk behavior for weak correlations, whereas anomalous diffusion cannot be ruled out in the strongly correlated case, i.e., for small aa.Comment: 11 pages, 6 figure

    Universality from disorder in the random-bond Blume-Capel model

    Get PDF
    Using high-precision Monte Carlo simulations and finite-size scaling we study the effect of quenched disorder in the exchange couplings on the Blume-Capel model on the square lattice. The first-order transition for large crystal-field coupling is softened to become continuous, with a divergent correlation length. An analysis of the scaling of the correlation length as well as the susceptibility and specific heat reveals that it belongs to the universality class of the Ising model with additional logarithmic corrections observed for the Ising model itself if coupled to weak disorder. While the leading scaling behavior in the disordered system is therefore identical between the second-order and first-order segments of the phase diagram of the pure model, the finite-size scaling in the ex-first-order regime is affected by strong transient effects with a crossover length scale L32L^{\ast} \approx 32 for the chosen parameters

    The challenges of containing SARS-CoV-2 via test-trace-and-isolate

    No full text
    Without a cure, vaccine, or proven long-term immunity against SARS-CoV-2, test-trace-and-isolate (TTI) strategies present a promising tool to contain the viral spread. For any TTI strategy, however, a major challenge arises from pre- and asymptomatic transmission as well as TTI-avoiders, which contribute to hidden, unnoticed infection chains. In our semi-analytical model, we identified two distinct tipping points between controlled and uncontrolled spreading: one, at which the behavior-driven reproduction number of the hidden infections becomes too large to be compensated by the available TTI capabilities, and one at which the number of new infections starts to exceed the tracing capacity, causing a self-accelerating spread. We investigated how these tipping points depend on realistic limitations like limited cooperativity, missing contacts, and imperfect isolation, finding that TTI is likely not sufficient to contain the natural spread of SARS-CoV-2. Therefore, complementary measures like reduced physical contacts and improved hygiene probably remain necessary

    Scaling and universality in the phase diagram of the 2D Blume-Capel model

    Get PDF
    We review the pertinent features of the phase diagram of the zero-field Blume-Capel model, focusing on the aspects of transition order, finite-size scaling and universality. In particular, we employ a range of Monte Carlo simulation methods to study the 2D spin-1 Blume-Capel model on the square lattice to investigate the behavior in the vicinity of the first-order and second-order regimes of the ferromagnet-paramagnet phase boundary, respectively. To achieve high-precision results, we utilize a combination of (i) a parallel version of the multicanonical algorithm and (ii) a hybrid updating scheme combining Metropolis and generalized Wolff cluster moves. These techniques are combined to study for the first time the correlation length of the model, using its scaling in the regime of second-order transitions to illustrate universality through the observed identity of the limiting value of ξ/L\xi/L with the exactly known result for the Ising universality class.Comment: 16 pages, 7 figures, 1 table, submitted to Eur. Phys. J. Special Topic

    Time-lapse characterization of hydrothermal seawater and microbial interactions with basaltic tephra at Surtsey Volcano

    Get PDF
    A new International Continental Drilling Program (ICDP) project will drill through the 50-yearoldedifice of Surtsey Volcano, the youngest of the Vestmannaeyjar Islands along the south coast of Iceland, to perform interdisciplinary time-lapse investigations of hydrothermal and microbial interactions with basaltic tephra. The volcano, created in 1963–1967 by submarine and subaerial basaltic eruptions, was first drilled in 1979. In October 2014, a workshop funded by the ICDP convened 24 scientists from 10 countries for 3 and a half days on Heimaey Island to develop scientific objectives, site the drill holes, and organize logistical support. Representatives of the Surtsey Research Society and Environment Agency of Iceland also participated. Scientific themes focus on further determinations of the structure and eruptive processes of the type locality of Surtseyan volcanism, descriptions of changes in fluid geochemistry and microbial colonization of the subterrestrial deposits since drilling 35 years ago, and monitoring the evolution of hydrothermal and biological processes within the tephra deposits far into the future through the installation of a Surtsey subsurface observatory. The tephra deposits provide a geologic analog for developing specialty concretes with pyroclastic rock and evaluating their long-term performance under diverse hydrothermal conditions

    New Insights into the mineralogy of the Atlantis II deep metalliferous sediments, Red Sea

    Get PDF
    The Atlantis II Deep of the Red Sea hosts the largest known hydrothermal ore deposit on the ocean floor and the only modern analog of brine pool-type metal deposition. The deposit consists mainly of chemical-clastic sediments with input from basin-scale hydrothermal and detrital sources. A characteristic feature is the millimeter-scale layering of the sediments, which bears a strong resemblance to banded iron formation (BIF). Quantitative assessment of the mineralogy based on relogging of archived cores, detailed petrography, and sequential leaching experiments shows that Fe-(oxy)hydroxides, hydrothermal carbonates, sulfides, and authigenic clays are the main “ore” minerals. Mn-oxides were mainly deposited when the brine pool was more oxidized than it is today, but detailed logging shows that Fe-deposition and Mn-deposition also alternated at the scale of individual laminae, reflecting short-term fluctuations in the Lower Brine. Previous studies underestimated the importance of nonsulfide metal-bearing components, which formed by metal adsorption onto poorly crystalline Si-Fe-OOH particles. During diagenesis, the crystallinity of all phases increased, and the fine layering of the sediment was enhanced. Within a few meters of burial (corresponding to a few thousand years of deposition), biogenic (Ca)-carbonate was dissolved, manganosiderite formed, and metals originally in poorly crystalline phases or in pore water were incorporated into diagenetic sulfides, clays, and Fe-oxides. Permeable layers with abundant radiolarian tests were the focus for late-stage hydrothermal alteration and replacement, including deposition of amorphous silica and enrichment in elements such as Ba and Au

    Seismic imaging of the shallow crust beneath the Krafla central volcano, NE Iceland

    Get PDF
    We studied the seismic velocity structure beneath the Krafla central volcano, NE Iceland, by performing 3-D tomographic inversions of 1453 earthquakes recorded by a temporary local seismic network between 2009 and 2012. The seismicity is concentrated primarily around the Leirhnjúkur geothermal field near the center of the Krafla caldera. To obtain robust velocity models, we incorporated active seismic data from previous surveys. The Krafla central volcano has a relatively complex velocity structure with higher P wave velocities (V_p) underneath regions of higher topographic relief and two distinct low-V_p anomalies beneath the Leirhnjúkur geothermal field. The latter match well with two attenuating bodies inferred from S wave shadows during the Krafla rifting episode of 1974–1985. Within the Leirhnjúkur geothermalreservoir, we resolved a shallow (−0.5 to 0.5 km below sea level; bsl) region with low-V_p/V_s values and a deeper (0.5–1.5 km bsl) high-V_p/V_s zone. We interpret the difference in the velocity ratios of the two zones to be caused by higher rock porosities and crack densities in the shallow region and lower porosities and crack densities in the deeper region. A strong low-V_p/V_s anomaly underlies these zones, where a superheated steam zone within felsic rock overlies rhyolitic melt

    Metabolic Effects of n-3 PUFA as Phospholipids Are Superior to Triglycerides in Mice Fed a High-Fat Diet: Possible Role of Endocannabinoids

    Get PDF
    Background n-3 polyunsaturated fatty acids, namely docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), reduce the risk of cardiovascular disease and can ameliorate many of obesity-associated disorders. We hypothesised that the latter effect will be more pronounced when DHA/EPA is supplemented as phospholipids rather than as triglycerides. Methodology/Principal Findings In a ‘prevention study’, C57BL/6J mice were fed for 9 weeks on either a corn oil-based high-fat obesogenic diet (cHF; lipids ~35% wt/wt), or cHF-based diets in which corn oil was partially replaced by DHA/EPA, admixed either as phospholipids or triglycerides from marine fish. The reversal of obesity was studied in mice subjected to the preceding cHF-feeding for 4 months. DHA/EPA administered as phospholipids prevented glucose intolerance and tended to reduce obesity better than triglycerides. Lipemia and hepatosteatosis were suppressed more in response to dietary phospholipids, in correlation with better bioavailability of DHA and EPA, and a higher DHA accumulation in the liver, white adipose tissue (WAT), and muscle phospholipids. In dietary obese mice, both DHA/EPA concentrates prevented a further weight gain, reduced plasma lipid levels to a similar extent, and tended to improve glucose tolerance. Importantly, only the phospholipid form reduced plasma insulin and adipocyte hypertrophy, while being more effective in reducing hepatic steatosis and low-grade inflammation of WAT. These beneficial effects were correlated with changes of endocannabinoid metabolome in WAT, where phospholipids reduced 2-arachidonoylglycerol, and were more effective in increasing anti-inflammatory lipids such as N-docosahexaenoylethanolamine. Conclusions/Significance Compared with triglycerides, dietary DHA/EPA administered as phospholipids are superior in preserving a healthy metabolic profile under obesogenic conditions, possibly reflecting better bioavalability and improved modulation of the endocannabinoid system activity in WA
    corecore