413 research outputs found
Anticipation of pain enhances the nociceptive transmission and functional connectivity within pain network in rats
<p>Abstract</p> <p>Background</p> <p>Expectation is a very potent pain modulator in both humans and animals. There is evidence that pain transmission neurons are modulated by expectation preceding painful stimuli. Nonetheless, few studies have examined the influence of pain expectation on the pain-related neuronal activity and the functional connectivity within the central nociceptive network.</p> <p>Results</p> <p>This study used a tone-laser conditioning paradigm to establish the pain expectation in rats, and simultaneously recorded the anterior cingulate cortex (ACC), the medial dorsal thalamus (MD), and the primary somatosensory cortex (SI) to investigate the effect of pain expectation on laser-induced neuronal responses. Cross-correlation and partial directed coherence analysis were used to determine the functional interactions within and between the recorded areas during nociceptive transmission. The results showed that under anticipation condition, the neuronal activity to the auditory cue was significantly increased in the ACC area, whereas those to actual noxious stimuli were enhanced in all the recorded areas. Furthermore, neuronal correlations within and between these areas were significantly increased under conditions of expectation compared to those under non-expectation conditions, indicating an enhanced synchronization of neural activity within the pain network. In addition, information flow from the medial (ACC and MD) to the lateral (SI cortex) pain pathway increased, suggesting that the emotion-related neural circuits may modulate the neuronal activity in the somatosensory pathway during nociceptive transmission.</p> <p>Conclusion</p> <p>These results demonstrate that the nociceptive processing in both medial and lateral pain systems is modulated by the expectation of pain.</p
Development of Chinese food picture library for inducing food cravings
Cue-induced food cravings are strong desires directed toward specific foods, usually ones with high caloric content, and can lead to overeating. However, although food cravings vary according to individual preferences for specific high-calorie food subtypes, a structured library of food craving-inducing pictures including multiple categories of high-calorie foods does not yet exist. Here, we developed and validated a picture library of Chinese foods (PLCF) consisting of five subtypes of high-calorie foods (i.e., sweets, starches, salty foods, fatty foods, and sugary drinks) to allow for more nuanced future investigations in food craving research, particularly in Chinese cultural contexts. We collected 100 food images representing these five subtypes, with four food items per subtype depicted in five high-resolution photographs each. We recruited 241 individuals with overweight or obesity to rate the food pictures based on craving, familiarity, valence, and arousal dimensions. Of these participants, 213 reported the severity of problematic eating behaviors as a clinical characteristic. Under the condition of mixing multiple subtypes of high-calorie foods, we did not observe significant differences in craving ratings for high- and low-calorie food images (ptukey > 0.05). Then, we compared each subtype of high-calorie food images to low-calorie ones, and found craving ratings were greater for the images of salty foods and sugary drinks (ps < 0.05). Furthermore, we conducted a subgroup analysis of individuals according to whether they did or did not meet the criteria for food addiction (FA) and found that greater cravings induced by the images of high-calorie food subtypes (i.e., salty foods and sugary drinks) only appeared in the subgroup that met the FA criteria. The results show that the PLCF is practical for investigating food cravings
Microtubule-severing enzymes: From cellular functions to molecular mechanism.
Microtubule-severing enzymes generate internal breaks in microtubules. They are conserved in eukaryotes from ciliates to mammals, and their function is important in diverse cellular processes ranging from cilia biogenesis to cell division, phototropism, and neurogenesis. Their mutation leads to neurodegenerative and neurodevelopmental disorders in humans. All three known microtubule-severing enzymes, katanin, spastin, and fidgetin, are members of the meiotic subfamily of AAA ATPases that also includes VPS4, which disassembles ESCRTIII polymers. Despite their conservation and importance to cell physiology, the cellular and molecular mechanisms of action of microtubule-severing enzymes are not well understood. Here we review a subset of cellular processes that require microtubule-severing enzymes as well as recent advances in understanding their structure, biophysical mechanism, and regulation
Comparison of Four ChIP-Seq Analytical Algorithms Using Rice Endosperm H3K27 Trimethylation Profiling Data
Chromatin immunoprecipitation coupled with high throughput DNA Sequencing (ChIP-Seq) has emerged as a powerful tool for genome wide profiling of the binding sites of proteins associated with DNA such as histones and transcription factors. However, no peak calling program has gained consensus acceptance by the scientific community as the preferred tool for ChIP-Seq data analysis. Analyzing the large data sets generated by ChIP-Seq studies remains highly challenging for most molecular biology laboratories
Modeling and forecasting riverine dissolved inorganic nitrogen export using anthropogenic nitrogen inputs, hydroclimate, and land-use change
A quantitative understanding of riverine nitrogen (N) export in response to human activities and climate change is critical for developing effective watershed N pollution control measures. This study quantified net anthropogenic N inputs (NANI) and riverine dissolved inorganic N (DIN=NO3-N+NH4-N+NO2-N) export for the upper Jiaojiang River catchment in eastern China over the 1980-2010 time period and examined how NANI, hydroclimate, and land-use practices influenced riverine DIN export. Over the 31-yr study period, riverine DIN yield increased by 1.6-fold, which mainly results from a ~77% increase in NANI and increasing fractional delivery of NANI due to a ~55% increase in developed land area. An empirical model that utilizes an exponential function of NANI and a power function of combining annual water discharge and developed land area percentage could account for 89% of the variation in annual riverine DIN yields in 1980-2010. Applying this model, annual NANI, catchment storage, and natural background sources were estimated to contribute 57%, 22%, and 21%, respectively, of annual riverine DIN exports on average. Forecasting based on a likely future climate change scenario predicted a 19.6% increase in riverine DIN yield by 2030 due to a 4% increase in annual discharge with no changes in NANI and land-use compared to the 2000-2010 baseline condition. Anthropogenic activities have increased both the N inputs available for export and the fractional export of N inputs, while climate change can further enhance riverine N export. An integrated N management strategy that considers the influence of anthropogenic N inputs, land-use and climate change is required to effectively control N inputs to coastal areas
Dual-Level Regulation of ACC Synthase Activity by MPK3/MPK6 Cascade and Its Downstream WRKY Transcription Factor during Ethylene Induction in Arabidopsis
Plants under pathogen attack produce high levels of ethylene, which plays important roles in plant immunity. Previously, we reported the involvement of ACS2 and ACS6, two Type I ACS isoforms, in Botrytis cinerea–induced ethylene biosynthesis and their regulation at the protein stability level by MPK3 and MPK6, two Arabidopsis pathogen-responsive mitogen-activated protein kinases (MAPKs). The residual ethylene induction in the acs2/acs6 double mutant suggests the involvement of additional ACS isoforms. It is also known that a subset of ACS genes, including ACS6, is transcriptionally induced in plants under stress or pathogen attack. However, the importance of ACS gene activation and the regulatory mechanism(s) are not clear. In this report, we demonstrate using genetic analysis that ACS7 and ACS11, two Type III ACS isoforms, and ACS8, a Type II ACS isoform, also contribute to the B. cinerea–induced ethylene production. In addition to post-translational regulation, transcriptional activation of the ACS genes also plays a critical role in sustaining high levels of ethylene induction. Interestingly, MPK3 and MPK6 not only control the stability of ACS2 and ACS6 proteins via direct protein phosphorylation but also regulate the expression of ACS2 and ACS6 genes. WRKY33, another MPK3/MPK6 substrate, is involved in the MPK3/MPK6-induced ACS2/ACS6 gene expression based on genetic analyses. Furthermore, chromatin-immunoprecipitation assay reveals the direct binding of WRKY33 to the W-boxes in the promoters of ACS2 and ACS6 genes in vivo, suggesting that WRKY33 is directly involved in the activation of ACS2 and ACS6 expression downstream of MPK3/MPK6 cascade in response to pathogen invasion. Regulation of ACS activity by MPK3/MPK6 at both transcriptional and protein stability levels plays a key role in determining the kinetics and magnitude of ethylene induction
- …